Experimental Approach to the Creation of Efficient Multicomponent Nanocomposites for Antitumor Therapy

Authors

  • N. Kutsevol Taras Shevchenko National University of Kyiv
  • Y. Kuziv Taras Shevchenko National University of Kyiv
  • V. Chumachenko Taras Shevchenko National University of Kyiv
  • O. Nadtoka Taras Shevchenko National University of Kyiv
  • L. Bulavin Taras Shevchenko National University of Kyiv
  • V. Chekhun R.E. Kavetsky Institute for Experimental Pathology, Oncology and Radiobiology

DOI:

https://doi.org/10.15407/ujpe65.8.678

Keywords:

polymer nanocarrier, gold nanoparticles, Chlorine e6, Doxorubicin, antitumor therapy

Abstract

Water-soluble polymers with special characteristics can be used as carriers in which the active ingredients are entrapped, encapsulated, adsorbed, or chemically attached. The understanding of the processes occurring during the formation of multicomponent nanosystems is the urgent task for the synthesis of antitumor nanocomposites. Gold nanoparticles (AuNPs), photosensitizer Chlorine e6 (Ce6), and Doxorubicin (Dox) are currently used for the photodynamic therapy and chemotherapy. We have been focused on the study of three-component nanosystems Polymer/AuNPs/Ce6, and four-component nanosystems Polymer/AuNPs/Ce6/Dox at physiological temperatures (37 ∘C). The star-like copolymer with Dextran core and grafted Polyacrylamide chains in nonionic and anionic forms are used as a matrix for the synthesis of nanocomposites. The nanosystems are characterized by the dynamic light scattering and transmission electron microscopy. The increasing of the aggregation processes for the four-component nanosystem Polymer/AuNPs/Ce6/Dox in comparison with the three-component one Polymer/AuNPs/Ce6 is registered. These nanosystems are tested in vitro against the subline of breast carcinoma MCF-7/S – sensitive to cytostatics. It is demonstrated that the increase of the aggregation process occurring in four-component systems leads to the loss of the antitumor activity of multicomponent drugs.

References

S. Caban, E. Aytekin, A. Sahin, A.Y. Capan. Nanosystems for drug delivery. OA Drug Design & Delivery 2, 2 (2014).

S.K. Sahoo, V. Labhasetwar. Nanotech approaches to drug delivery and imaging. Drug Discov. Today 8 (24), 1112 (2003). https://doi.org/10.1016/S1359-6446(03)02903-9

N.A. Ochekpe, P.O. Olorunfemi, N.C. Ngwuluka. Nanotechnology and drug delivery part 1: Background and applications. Trop. J. Pharm. Res. 8 (3), 265 (2009). https://doi.org/10.4314/tjpr.v8i3.44546

N.R. Jabir, S. Tabrez, G.M. Ashraf et al. Nanotechnology-based approaches in anticancer research. Int. J. Nanomed. 7, 4391 (2012). https://doi.org/10.2147/IJN.S33838

N. Jawahar, S.N. Meyyanathan. Polymeric nanoparticles for drug delivery and targeting: A comprehensive review. Int. J. Health Allied. Sci. 1, 217 (2012). https://doi.org/10.4103/2278-344X.107832

W. Mei, Q. Wu. Applications of metal nanoparticles in medicine/Metal nanoparticles as anticancer agents. Metal Nanoparticles, ??? 169 (2017). https://doi.org/10.1002/9783527807093.ch7

G. Frens. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature Phys. Sci. 241 (105), 20 (1973). https://doi.org/10.1038/physci241020a0

L.A. Dykman, N.G. Khlebtsov. Gold nanoparticles in biology and medicine: recent advances and prospects. Acta Naturae 3 (2), 34 (2011). https://doi.org/10.32607/20758251-2011-3-2-34-55

P.G. Calavia, G. Bruce, L. Perez-Garcia, D.A. Russell. Photosensitiser-gold nanoparticle conjugates for photodynamic therapy of cancer. Photochem. Photobiol. Sci. 17 (11), 1534 (2018). https://doi.org/10.1039/C8PP00271A

N.V. Kutsevol, V.A. Chumachenko, M. Rawiso et al. Star-like dextran-polyacrylamide polymers: Prospects of use in nanotechnologies. J. Struct. Chem. 56 (5), 959 (2015). https://doi.org/10.1134/S0022476615050200

T. Matvienko, V. Sokolova, S. Prylutska et al. In vitro study of the anticancer activity of various Doxorubicin-containing dispersions. Bioimpacts 9 (1), 59 (2019). https://doi.org/10.15171/bi.2019.07

G. Telegeev, N. Kutsevol, V. Chumachenko et al. Dextran-polyacrylamide as matrices for creation of anticancer nanocomposite. Int. J. Pol. Sci.Article ID 4929857, (2017). https://doi.org/10.1155/2017/4929857

N. Kutsevol, A. Naumenko, V. Chumachenko et al. Agregation processes in hybrid nanosystem polymer/nano-silver/cisplatin. Ukr. J. Phys. 63 (6), 513 (2018). https://doi.org/10.15407/ujpe63.6.513

V.A. Chumachenko, I.O. Shton, E.D. Shishko et al. Branched copolymers dextran-graft-polyacrylamide as nanocarriers for delivery of gold nanoparticles and photosensitizers to tumor cells. In: Nanophysics, Nanophotonics, Surface Studies, and Applications (Springer, 2015), pp. 379-390. https://doi.org/10.1007/978-3-319-30737-4_32

M. Bezuglyi, N. Kutsevol, M. Rawiso, T. Bezugla. Water-soluble branched copolymers dextran-polyacrylamide and their anionic derivates as matrices for metal nanoparticles. In-Situ Synthesis, Chemik. 8 (66), 862 (2012).

S. Provencher. CONTIN: A general purpose constrained regularization program for inverting noisy linear algebraic and integral equations. Comput. Phys. Commun. 27, 229 (1992). https://doi.org/10.1016/0010-4655(82)90174-6

A. Scotti, W. Liu, J.S. Hyatt et al. The CONTIN algorithm and its application to determine the size distribution of microgel suspensions. J. Chem. Phys. 142, 234905 (2015). https://doi.org/10.1063/1.4921686

N. Kutsevol, A. Naumenko, V. Chumachenko et al. Agregation processes in hybrid nanosystem polymer/nano-silver/cisplatin. Ukr. J. Phys. 63 (6), 513 (2018). https://doi.org/10.15407/ujpe63.6.513

V. Chumachenko, N. Kutsevol, Yu. Harahuts et al. Star-like Dextran-graft-PNiPAM copolymers. Effect of internal molecular structure on the phase transition. J. Mol. Liquids 235, 77 (2017). https://doi.org/10.1016/j.molliq.2017.02.098

E. Tomaszewska, K. Soliwoda, K. Kadziola, et al. Detection limits of DLS and UV-Vis spectroscopy in characterization of polydisperse nanoparticles colloids. J. Nanomaterials Article ID 313081, 10 pages (2013). https://doi.org/10.1155/2013/313081

Downloads

Published

2020-07-30

How to Cite

Kutsevol, N., Kuziv, Y., Chumachenko, V., Nadtoka, O., Bulavin, L., & Chekhun, V. (2020). Experimental Approach to the Creation of Efficient Multicomponent Nanocomposites for Antitumor Therapy. Ukrainian Journal of Physics, 65(8), 678. https://doi.org/10.15407/ujpe65.8.678

Issue

Section

Liquid crystals and polymers

Most read articles by the same author(s)

1 2 > >>