Coulomb C2 and C4 Form Factors of 18O, 20,22Ne Nuclei Using Bohr−Mottelson Collective Model

Authors

  • I.A.H. Ajeel Department of Physics, College of Science, University of Wasit
  • M.J.R. Aldhuhaibat Department of Physics, College of Science, University of Wasit
  • K.S. Jassim Department of Physics, College of Education for pure Sciences, University of Babylon

DOI:

https://doi.org/10.15407/ujpe67.2.110

Keywords:

sd-shell nuclei, longitudinal form factors, Coulomb form factors, Nushellx@MUS code

Abstract

Coulomb C2 and C4 form factors with core-polarization effects to 2+ and 4+ states in 18O and 20,22Ne have been studied using shell model calculations. The two-body effective Wildenthal interaction and universal sd-shell interaction A (USDA) are used for sd-shell orbits. Corepolarization effects are calculated using the Coulomb valance Tassie model (CVTM) and Bohr–Mottelson (BM) collective model. Some wave functions of the radial single-particle matrix elements have been calculated with harmonic oscillator (HO), Wood–Saxon (WS), and SKX potentials. The inclusions of core-polarization effects give good agreements with experimental data as comparing with model space calculations. The results for different potentials are compared.

References

R.R. Roy, B.P. Nigam. Nuclear Physics (John Wiley and Sons, INC., 1967).

B.H. Wildenthal. Empirical strengths of spin operators in nuclei. Progr. Part. Nucl. Phys. 11, 5 (1984).

https://doi.org/10.1016/0146-6410(84)90011-5

E.K. Warburton, B.A. Brown. Effective interactions for the 0p1s0d nuclear shell-model space. Phys. Rev. C 46, 923 (1992).

https://doi.org/10.1103/PhysRevC.46.923

E.K. Warburton, J.A. Becker, B.A. Brown. Mass systematics for A = 29-44 nuclei: The deformed A ∼ 32 region. Phys. Rev. C 41, 1147 (1990).

https://doi.org/10.1103/PhysRevC.41.1147

Yu. Utsuno, T. Otsuka, T. Mizusaki, M. Honma. Varying shell gap and deformation in N ∼ 20 unstable nuclei studied by the Monte Carlo shell model.Phys. Rev. C 60, 054315 (1999).

https://doi.org/10.1103/PhysRevC.60.054315

S. Nummela, P. Baumann, E. Caurier et al. Spectroscopy of 34,35Si by beta decay: sd-f p shell gap and single-particle states. Phys. Rev. C 63, 044316 (2001).

B.A. Brown, W.A. Richter. New "USD" Hamiltonians for the sd shell. Phys. Rev. C 74, 034315 (2006).

https://doi.org/10.1103/PhysRevC.74.034315

G. Bertsch, J. Borysowicz, H. McManus, W.G. Love. Interactions for inelastic scattering derived from realistic potentials. Nucl. Phys. Section A 284, 399 (1977).

https://doi.org/10.1016/0375-9474(77)90392-X

W.A. Richter, B.A. Brown. 26Mg observables for the USDA and USDB Hamiltonians. Phys. Rev. C 80, 034301 (1992).

https://doi.org/10.1103/PhysRevC.80.034301

A.R. Ridha, M.K. Suhayeb. Theoretical study of nuclear density distributions and elastic electron scattering form factors for some halo nuclei. Iraqi J. Phys. 58, 2098 (2107).

J. Liu, Ch. Xu, Sh. Wang, Zh. Ren. Coulomb form factors of odd-A nuclei within an axially deformed relativistic mean-field model. Phys. Rev. C 96, 034314 (2017).

https://doi.org/10.1103/PhysRevC.96.034314

R.A. Radhi, A.K. Hamoudi, S.K. Jassim. Calculations of longitudinal form factors ofp-shell nuclei, using enlarged model space including core-polarization effects with realistic two-body effective interaction. Indian J. Phys. 81, 683 (2007).

K.S. Jassim, A.A. Al-Sammarrae, F.I. Sharrad, H. Abu Kassim. Elastic and inelastic electron-nucleus scattering form factors of some light nuclei: 23Na, 25Mg, 27Al, and 41Ca. Phys. Rev. C 89, 014304 (2014).

https://doi.org/10.1103/PhysRevC.89.014304

K.S. Jassim, R.A. Radhi, N.M. Hussain. Inelastic magnetic electron scattering form factors of the 26Mg nucleus. Pramana J. Phys. 86, 87 (2016).

https://doi.org/10.1007/s12043-015-1012-x

K.S. Jassim. The electron scattering form factor of 10B, 32S and 48Ca nucle. Physica Scripta 86, 035202 (2012).

https://doi.org/10.1088/0031-8949/86/03/035202

K.S. Jassim, A.I. Faris. Study of nuclear structure of 58,62Ni isotopes using the F5PVH effective interaction. Int. J. Nucl. Energy Sci. Techn. 13, 261 (2019).

https://doi.org/10.1504/IJNEST.2019.103239

K.S. Jassim, S.R. Sahib. Large-scale shell model calculations of the 25,26Mg, 27Al and 19F nucleus. Int. J. Nucl. Energy Sci. Techn. 12, 81 (2018).

https://doi.org/10.1504/IJNEST.2018.10013864

K.S. Jassim. Nuclear structure of 104,106,108Sn isotopes using the NuShell computer code. Chinese J. Phys. 51, 441 (2013).

L. Tassie. A model of nuclear shape oscillations for g? Transitions and electron excitation. Australian J. Phys. 9 (4), 407 (1956).

https://doi.org/10.1071/PH560407

T. de Forest, Jr., J.D. Walecka. Electron scattering and nuclear structure. Advan. Phys. 15, 1 (1966).

https://doi.org/10.1080/00018736600101254

J. Heisenberg, J.Mc. Carthy, I. Sick. Inelastic electron scattering from several Ca, Ti and Fe isotopes. Nucl. Phys. A 164, 353 (1971).

https://doi.org/10.1016/0375-9474(71)90219-3

B.A. Brown, M. Rae. NuShellMSU. MSU-NSCL report 524, 1 (2007).

B.A. Brown, W. Chung, B.H. Wildenthal. Electromagnetic multipole moments of ground states of stable odd-mass nuclei in the sd shell. Phys. Rev. C 22 (2), 774 (1980).

https://doi.org/10.1103/PhysRevC.22.774

B.E. Norum, M.V. Hynes, H. Miska, W. Bertozzi, J. Kelly, S. Kowalski, F.N. Rad, C.P. Sargent, T. Sasanuma, W. Turchinetz. Inelastic electron scattering from 18O. Phys. Rev. C 25, 1778 (1982).

https://doi.org/10.1103/PhysRevC.25.1778

Y. Horikawa, Y. Torizuka, A. Nakada, S. Mitsunobu et al. The deformations in 20Ne, 24Mg and 28Si from electron scattering. Phys. Lett. B 36, 9 (1971).

https://doi.org/10.1016/0370-2693(71)90306-6

X.K. Maruyama, F.J. Kline, J.W. Lightbody et al. Electroexcitation of 22Ne below Ex = 8.6 MeV. Phys. Rev. C 19, 1624 (1979).

https://doi.org/10.1103/PhysRevC.19.1624

Downloads

Published

2022-04-01

How to Cite

Ajeel, I., Aldhuhaibat, M., & Jassim, K. (2022). Coulomb C2 and C4 Form Factors of 18O, 20,22Ne Nuclei Using Bohr−Mottelson Collective Model. Ukrainian Journal of Physics, 67(2), 110. https://doi.org/10.15407/ujpe67.2.110

Issue

Section

Fields and elementary particles