Thermal Conductivity of Si Nanowires with an Amorphous SiO2 Shell: A Molecular Dynamics Study


  • V.V. Kuryliuk Taras Shevchenko National University of Kyiv, Faculty of Physics
  • S.S. Semchuk Taras Shevchenko National University of Kyiv, Faculty of Physics
  • A.M. Kuryliuk Taras Shevchenko National University of Kyiv, Faculty of Physics
  • P.P. Kogutyuk Taras Shevchenko National University of Kyiv, Faculty of Physics



thermal conductivity, nanowire, silicon, molecular dynamics


The processes of thermal transport in Si nanowires covered with an amorphous SiO2 shell have been studied using the nonequilibrium molecular dynamics method. The influence of the amorphous layer thickness, radius of the crystalline silicon core, and temperature on the thermal conductivity of the nanowires is considered. It is found that the increase of the amorphous shell thickness diminishes the thermal conductivity in Si/SiO2 nanowires of the core-shell type. The results obtained also testify that the thermal conductivity of Si/SiO2 nanowires at 300 K increases with the cross-section area of the crystalline Si core. The temperature dependence of the thermal conductivity coefficient in Si/SiO2 nanowires of the core-shell type is found to be considerably weaker than that in crystalline silicon nanowires. This difference was shown to result from different dominant mechanisms of phonon scattering in those nanowires. The results obtained demonstrate that Si/SiO2 nanowires are a promising material for thermoelectric applications.


Y. Cui, Z. Zhong, D. Wang, W.U. Wang, C.M. Lieber. High performance silicon nanowire fi eld eff ect transistors.

Nano Letters 3, 149 (2003).

Y. He, W. Yu, G. Ouyang. Shape-dependent conversion efficiency of Si nanowire solar cells with polygonal cross-

sections. J. Appl. Phys. 119, 225101 (2016).

M.N. Esfahani, Y. Kilinc, M.C. Karakan, E. Orhan, M.S. Hanay, Y. Leblebici, B.E. Alaca. Piezoresistive silicon nanowire resonators as embedded building blocks in thick SOI. J. Micromech. Microeng. 28, 045006 (2018).

A.K. Katiyar, A.K. Sinha, S. Manna, S.K. Ray. Fabrication of Si/ZnS radial nanowire heterojunction arrays for white

light emitting devices on si substrates. ACS Appl. Mater. Interf. 6, 15007 (2014).

Y. Yang, W. Yuan, W. Kang, Y. Ye, Q. Pan, X. Zhang, Y. Ke, C. Wang, Z. Qiu, Y. Tang. A review on silicon nanowire-based anodes for next-generation high-performance lithium-ion batteries from a material-based perspective. Sustain. Energ. Fuels 3, 1 (2020).

N.I. Goktas, P. Wilson, A. Ghukasyan, D. Wagner, S. McNamee, R.R. LaPierre Nanowires for energy: A review. Appl. Phys. Rev. 5, 041305 (2018).

F. Dom'ınguez-Adame, M. Mart'ın-Gonz'alez, D. S'anchez, A. Cantarero. Nanowires: A route to effi cient thermoelectric devices. Physica E 113, 213 (2019).

O. Korotchenkov, A. Nadtochiy, V. Kuryliuk, C.-C. Wang, P.-W. Li, A. Cantarero. Thermoelectric energy conversion

in layered structures with strained Ge quantum dots grown on Si surfaces. Eur. Phys. J. B 87, 64 (2014).

A. Majumdar. Thermoelectricity in semiconductor nanostructures. Science 303, 777 (2004).

A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang. Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163 (2008).

J. Chen, G. Zhang, B. Li. A universal gauge for thermal conductivity of silicon nanowires with diff erent cross sectional geometries. J. Chem. Phys. 135, 204705 (2011).

A. Paul, M. Luisier, G. Klimeck. Shape and orientation effects on the ballistic phonon thermal properties of ultra-

scaled Si nanowires. J. Appl. Phys. 110, 114309 (2011).

J.M. Weisse, A.M. Marconnet, D. Kim, P.M. Rao, M.A. Panzer, K.E. Goodson, X. Zheng. Thermal conductivity in porous silicon nanowire arrays. Nanosc. Res. Lett. 7, 554 (2012).

S. Yi, C. Yu. Modeling of thermoelectric properties of SiGe alloy nanowires and estimation of the best design parameters for high fi gure-of-merits. J. Appl. Phys. 117, 035105 (2015).

M. Royo, R. Rurali. Tuning thermal transport in Si nanowires by isotope engineering. Phys. Chem. Chem. Phys. 18, 26262 (2016).

M.G. Shahraki, Z. Zeinali Eff ects of vacancy defects and axial strain on thermal conductivity of silicon nanowires: A reverse nonequilibrium molecular dynamics simulation. J. Phys. Chem. Solids 85, 233 (2015).

C.W. Zhang, H. Zhou, Y. Zeng, L. Zheng, Y.L. Zhan, K.D. Bi. A reduction of thermal conductivity of non-periodic Si/Ge superlattice nanowire: Molecular dynamics simulation. Int. J. Heat Mass Transf. 132, 681 (2019).

M. Isaiev, O. Didukh, T. Nychyporuk, V. Timoshenko, V. Lysenko. Anisotropic heat conduction in silicon nanowire network revealed by Raman scattering. Appl. Phys. Lett. 110, 011908 (2017).

J.P. Feser, J.S. Sadhu, B.P. Azeredo, K.H. Hsu, J. Ma, J. Kim, M. Seong, N.X. Fang, X. Li, P.M. Ferreira, S. Sinha, D.G. Cahill. Thermal conductivity of silicon nanowire arrays with controlled roughness. J. Appl. Phys. 112, 114306 (2012).

F. Zhuge, T. Takahashi, M. Kanai, K. Nagashima, N. Fukata, K. Uchida, T. Yanagida. Thermal conductivity of Si

nanowires with б-modulated dopant distribution by self-heated 3w method and its length dependence. J. Appl.

Phys. 124, 065105 (2018).

P. Lishchuk, M. Isaiev, L. Osminkina, R. Burbelo, T. Nychyporuk, V. Timoshenko. Photoacoustic characterization

of nanowire arrays formed by metal-assisted chemical etching of crystalline silicon substrates with different doping level. Physica E 107, 131 (2019).

S. Sarikurt, A. Ozden, A. Kandemir, C. Sevik, A. Kinaci, J.B. Haskins, T. Cagin. Tailoring thermal conductivity of

silicon/germanium nanowires utilizing core-shell architecture. J. Appl. Phys. 119, 155101 (2016).

M. Hu, K.P. Giapis, J.V. Goicochea, X. Zhang, D. Poulikakos. Signifi cant Reduction of Thermal Conductivity in Si/Ge Core-Shell Nanowires. Nano Lett. 11, 618 (2011).

X. Liu, G. Zhang, Q. Pei, Y. Zhang. Modulating the thermal conductivity of silicon nanowires via surface amorphization. Sci. Chin. Technolog. Sci. 57, 699 (2014).

S. Plimpton. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995).

J. Tersoff . Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Phys. Rev. B 39, 5566 (1989).

V. Kuryliuk, S. Semchuk. Molecular dynamics calculation of thermal conductivity in a-SiO2 and an a-SiO2-based nanocomposite. Ukr. J. Phys. 61, 835 (2016).

V.V. Kuryliuk, O.A. Korotchenkov. Atomistic simulation of the thermal conductivity in amorphous SiO2 matrix/Ge nanocrystal composites. Physica E 88, 228 (2017).

F. M¨uller-Plathe. A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. J. Chem. Phys. 106, 6082 (1997).

C.J. Glassbrenner, G.A. Slack. Thermal conductivity of silicon and germanium from 3 K to the melting point. Phys. Rev. 134, A1058 (1964).

T. Zushi, K. Ohmori, K. Yamada, T. Watanabe. Effect of a-SiO2 layer on the thermal transport properties of (100)

Si nanowires: A molecular dynamics study. Phys. Rev. B 91, 115308 (2015).

M. Hu, X. Zhang, K.P. Giapis, D. Poulikakos. Thermal conductivity reduction in core-shell nanowires. Phys. Rev. B 84, 085442 (2011).



How to Cite

Kuryliuk, V., Semchuk, S., Kuryliuk, A., & Kogutyuk, P. (2021). Thermal Conductivity of Si Nanowires with an Amorphous SiO2 Shell: A Molecular Dynamics Study. Ukrainian Journal of Physics, 66(5), 399.



Semiconductors and dielectrics