Mechanism of Defect Formation in Zr1 – xVxNiSn Thermoelectric Material
DOI:
https://doi.org/10.15407/ujpe66.4.333Keywords:
semiconductors, crystal lattices, defectsAbstract
Crystal and electronic structure, transport and energy state characteristics of the Zr1−xVx NiSn (0.01 ≤ x ≤ 0.1) thermoelectric material are investigated in the 80–400 K temperature interval. A mechanism of simultaneous generation of structural defects of the acceptor and donor nature, which determines the electric conductivity of the material, is established. It is shown that energetically expedient is a simultaneous occupation of the 4c position of Ni (3d84s2) atoms by V (3d34s2) atoms, which generates structural defects of the acceptor nature and the impurity acceptor band Ꜫ1A, as well as the 4a position of Zr (4d25s2) atoms, generating structural defects of the donor nature and the impurity donor band Ꜫ2D.
References
V.A. Romaka, V.V. Romaka, Yu.V. Stadnyk. Intermetallic Semiconductors: Properties and Applications (Lvivska Polytechnika, 2011) [ISBN: 978-617-607-053-5] (in Ukrainian).
V.V. Romaka, P.-F. Rogl, R. Carlini, C. Fanciulli. Prediction of the thermoelectric properties of half-heusler phases from the density functional theory. In: Alloys and Intermetallic Compounds. Ed. by C. Artini (Taylor and Francis Group, 2017) [ISBN: 978-1-4987-4143-9].
https://doi.org/10.1201/9781315151618-13
L.I. Anatychuk. Thermoelements and Thermoelectric Devices (Naukova Dumka, 1979).
B.I. Shklovsky, A.L. Efros. Electronic Properties of Doped Semiconductors (Springer, 1984).
https://doi.org/10.1007/978-3-662-02403-4
V.A. Romaka, D. Fruchart, Yu.V. Stadnyk, J. Tobola, Yu.K. Gorelenko, M.G. Shelyapina, L.P. Romaka, V.F. Chekurin. Conditions for attaining the maximum values of thermoelectric power in intermetallic semiconductors of the MgAgAs structural type. Semiconductors 40, 1275 (2006).
https://doi.org/10.1134/S1063782606110054
D. Fruchart, V.A. Romaka, Yu.V. Stadnyk, L.P. Romaka, Yu.K. Gorelenko, M.G. Shelyapina, V.F. Chekurin. Conductivity mechanisms in heavy-doped n-ZrNiSn intermetallic semiconductors. J. Alloys Compd. 438, 8 (2007).
https://doi.org/10.1016/j.jallcom.2006.08.001
V.V. Romaka, L.P. Romaka, V.Ya. Krayovskyy, Yu.V. Stadnyk. Stannides of Rare Earths and Transition Metals
(Lvivska Polytechnika, 2015) [ISBN: 978-617-607-816-6] (in Ukrainian).
V.A. Romaka, P.-F. Rogl, V.V. Romaka, Yu.V. Stadnyk, E.K. Hlil, V.Ya. Krayovskyy, A.M. Goryn. Eff ect of the accumulation of excess Ni atoms in the crystal structure of the intermetallic semiconductor n-ZrNiSn. Semiconductors 47, 892 (2013).
https://doi.org/10.1134/S1063782613070208
L. Akselrud, Yu. Grin. WinCSD: Software package for crystallographic calculations (Version 4). J. Appl. Crystallogr. 47, 803 (2014).
https://doi.org/10.1107/S1600576714001058
T. Roisnel, J. Rodriguez-Carvajal. WinPLOTR: A Windows tool for powder diff raction patterns analysis. Mater. Sci. Forum 378-381, 118 (2001).
https://doi.org/10.4028/www.scientific.net/MSF.378-381.118
H. Akai. Fast Korringa-Kohn-Rostoker coherent potential approximation and its application to fcc Ni-Fe systems. J. Phys.: Condens. Matter 1, 8045 (1989).
https://doi.org/10.1088/0953-8984/1/43/006
M. Schruter, H. Ebert, H. Akai, P. Entel, E. Hoff mann, G.G. Reddy. First-principles investigations of atomic disorder effects on magnetic and structural instabilities in transition-metal alloys. Phys. Rev. B 52, 188 (1995). https://doi.org/10.1103/PhysRevB.52.188
V.L. Moruzzi, J.F. Janak, A.R. Williams. Calculated Electronic Properties of Metals (Pergamon Press, 1978).
N.F. Mott, E.A. Davis. Electron Processes in Non-Crystalline Materials (Clarendon Press, 1979).
V.V. Romaka, G. Rogl, A. Grytsiv, P. Rogl. Determination of structural disorder in Heusler-type phases. Comp. Mater. Sci. 172, 109307 (2020). https://doi.org/10.1016/j.commatsci.2019.109307
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.