Mechanism of Defect Formation in Zr1 – xVxNiSn Thermoelectric Material


  • V.V. Romaka Leibniz Institute for Solid State and Materials Research Dresden, Lviv Polytechnic National University
  • Yu.V. Stadnyk Ivan Franko National University of Lviv
  • P.F. Rogl University of Vienna
  • L.P. Romaka Ivan Franko National University of Lviv
  • V.Ya. Krayovskyy Lviv Polytechnic National University
  • A.Ya. Horpenyuk Lviv Polytechnic National University
  • A.M. Horyn Ivan Franko National University of Lviv



semiconductors, crystal lattices, defects


Crystal and electronic structure, transport and energy state characteristics of the Zr1−xVx NiSn (0.01 ≤ x ≤ 0.1) thermoelectric material are investigated in the 80–400 K temperature interval. A mechanism of simultaneous generation of structural defects of the acceptor and donor nature, which determines the electric conductivity of the material, is established. It is shown that energetically expedient is a simultaneous occupation of the 4c position of Ni (3d84s2) atoms by V (3d34s2) atoms, which generates structural defects of the acceptor nature and the impurity acceptor band Ꜫ1A, as well as the 4a position of Zr (4d25s2) atoms, generating structural defects of the donor nature and the impurity donor band Ꜫ2D.


V.A. Romaka, V.V. Romaka, Yu.V. Stadnyk. Intermetallic Semiconductors: Properties and Applications (Lvivska Polytechnika, 2011) [ISBN: 978-617-607-053-5] (in Ukrainian).

V.V. Romaka, P.-F. Rogl, R. Carlini, C. Fanciulli. Prediction of the thermoelectric properties of half-heusler phases from the density functional theory. In: Alloys and Intermetallic Compounds. Ed. by C. Artini (Taylor and Francis Group, 2017) [ISBN: 978-1-4987-4143-9].

L.I. Anatychuk. Thermoelements and Thermoelectric Devices (Naukova Dumka, 1979).

B.I. Shklovsky, A.L. Efros. Electronic Properties of Doped Semiconductors (Springer, 1984).

V.A. Romaka, D. Fruchart, Yu.V. Stadnyk, J. Tobola, Yu.K. Gorelenko, M.G. Shelyapina, L.P. Romaka, V.F. Chekurin. Conditions for attaining the maximum values of thermoelectric power in intermetallic semiconductors of the MgAgAs structural type. Semiconductors 40, 1275 (2006).

D. Fruchart, V.A. Romaka, Yu.V. Stadnyk, L.P. Romaka, Yu.K. Gorelenko, M.G. Shelyapina, V.F. Chekurin. Conductivity mechanisms in heavy-doped n-ZrNiSn intermetallic semiconductors. J. Alloys Compd. 438, 8 (2007).

V.V. Romaka, L.P. Romaka, V.Ya. Krayovskyy, Yu.V. Stadnyk. Stannides of Rare Earths and Transition Metals

(Lvivska Polytechnika, 2015) [ISBN: 978-617-607-816-6] (in Ukrainian).

V.A. Romaka, P.-F. Rogl, V.V. Romaka, Yu.V. Stadnyk, E.K. Hlil, V.Ya. Krayovskyy, A.M. Goryn. Eff ect of the accumulation of excess Ni atoms in the crystal structure of the intermetallic semiconductor n-ZrNiSn. Semiconductors 47, 892 (2013).

L. Akselrud, Yu. Grin. WinCSD: Software package for crystallographic calculations (Version 4). J. Appl. Crystallogr. 47, 803 (2014).

T. Roisnel, J. Rodriguez-Carvajal. WinPLOTR: A Windows tool for powder diff raction patterns analysis. Mater. Sci. Forum 378-381, 118 (2001).

H. Akai. Fast Korringa-Kohn-Rostoker coherent potential approximation and its application to fcc Ni-Fe systems. J. Phys.: Condens. Matter 1, 8045 (1989).

M. Schruter, H. Ebert, H. Akai, P. Entel, E. Hoff mann, G.G. Reddy. First-principles investigations of atomic disorder effects on magnetic and structural instabilities in transition-metal alloys. Phys. Rev. B 52, 188 (1995).

V.L. Moruzzi, J.F. Janak, A.R. Williams. Calculated Electronic Properties of Metals (Pergamon Press, 1978).

N.F. Mott, E.A. Davis. Electron Processes in Non-Crystalline Materials (Clarendon Press, 1979).

V.V. Romaka, G. Rogl, A. Grytsiv, P. Rogl. Determination of structural disorder in Heusler-type phases. Comp. Mater. Sci. 172, 109307 (2020).




How to Cite

Romaka, V., Stadnyk, Y., Rogl, P., Romaka, L., Krayovskyy, V., Horpenyuk, A., & Horyn, A. (2021). Mechanism of Defect Formation in Zr1 – xVxNiSn Thermoelectric Material. Ukrainian Journal of Physics, 66(4), 333.



Semiconductors and dielectrics