Dynamics of the Cavity Radiation of a Correlated Emis-sion Laser Coupled to a Two-Mode Thermal Reservoir

Authors

  • B. Alemu Department of Physics, Adama Science and Technology University
  • Ch. Gashu Department of Physics, Jimma University
  • E. Mosisa Department of Physics, Jimma University
  • T. Abebe Department of Physics, Adama Science and Technology University

DOI:

https://doi.org/10.15407/ujpe66.12.1027

Keywords:

stimulated emission, photon statistics, quadrature squeezing, spontaneous emission

Abstract

In this paper, the quantum properties of the cavity light beam produced by a coherently driven nondegenerate three-level laser with an open cavity and coupled to a two-mode thermal reservoir are thoroughly analyzed. We have carried out our analysis by putting the noise operators associated with the thermal reservoir in normal order. Here we discussed more the effect of thermal light and the spontaneous emission on the dynamics of the quantum processes. It is found that the maximum degree of intracavity squeezing 43% below the vacuum-state level. Moreover, the presence of thermal light leads to decrease the degree of entanglement.

References

M.O. Scully, M.S. Zubairy. Quantum Optics (Cambridge University Press, 1997).

https://doi.org/10.1017/CBO9780511813993

F. Kassahun. Refind Quantum Analysis of Light (Create Space Independent Publishing Platform, 2014).

K. Fesseha. Three-level laser dynamics with squeezed light. Phys. Rev. A 63, 033811 (2001).

https://doi.org/10.1103/PhysRevA.63.033811

M.O. Scully, M.S. Zubairy. Noise free amplification via the two-photon correlated spontaneous emission laser. Opt. Commun. 66, 303 (1988).

https://doi.org/10.1016/0030-4018(88)90419-1

J. Anwar, M.S. Zubairy. Quantum-statistical properties of noise in a phase-sensitive linear amplifier. Phys. Rev. A 49, 481 (1994).

https://doi.org/10.1103/PhysRevA.49.481

N. Lu, F.X. Zhao, J. Bergou. Nonlinear theory of a twophoton correlated-spontaneous-emission laser: A coherently pumped two-level-two-photon laser. Phys. Rev. A 39, 5189 (1989).

https://doi.org/10.1103/PhysRevA.39.5189

Eyob Alebachew and K. Fesseha. Interaction of a two-level atom with squeezed light. Opt. Commun. 271, 154 (2007).

https://doi.org/10.1016/j.optcom.2006.10.016

Fesseha Kassahun. Stimulated emission by two-level atoms pumped to the upper level. Opt. Commun. 284, 1357 (2011).

https://doi.org/10.1016/j.optcom.2010.11.026

N.A. Ansari, J. Gea-Banacloche, M.S. Zubairy. Phasesensitive amplification in a three-level atomic system. Phys. Rev. A 41, 5179 (1990).

https://doi.org/10.1103/PhysRevA.41.5179

N.A. Ansari. Effect of atomic coherence on the second and higher-order squeezing in a two-photon three-level cascade atomic system. Phys. Rev. A 48, 4686 (1993).

https://doi.org/10.1103/PhysRevA.48.4686

T. Abebe. The quantum analysis of a non-degenerate three-level laser with spontaneous emission and noiseless vacuum reservoir. Ukr. J. Phys. 63 (11), 969 (2018).

https://doi.org/10.15407/ujpe63.11.969

S.M. Barnett, P.M. Radmore. Methods in Theoretical Quantum Optics (Oxford University Press, 1997) [ISBN: 9780198563617].

M.O. Scully, K. Wodkiewicz, M.S. Zubairy, J. Bergou, N. Lu, J. Meyer ter Vehn. Two-photon correlated-spontaneous-emission laser: Quantum noise quenching and squeezing. Phys. Rev. Lett. 60, 1832 (1988).

https://doi.org/10.1103/PhysRevLett.60.1832

T. Abebe. Enhancement of squeezing and entanglement in a non-degenerate three-level cascade laser with coherently driven cavity. Ukr. J. Phys. 63 (8), 733 (2018).

https://doi.org/10.15407/ujpe63.8.733

C.W. Gardiner, P. Zoller. Quantum Noise (Springer Series in Synergetics, 2000)

https://doi.org/10.1007/978-3-662-04103-1

D.F. Walls. Squeezed states of light. Nature 306, 141 (1983).

https://doi.org/10.1038/306141a0

C.M. Caves. On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. Rev. Mod. Phys. 52, 341 (1980).

https://doi.org/10.1103/RevModPhys.52.341

A. Abramovici et al. The laser interferometer gravitationalwave observatory. Science 256, 325 (1992).

https://doi.org/10.1126/science.256.5055.325

J. Harms et al. Squeezed-input, optical-spring, signalrecycled gravitational-wave detectors. Phys. Rev. D 68, 042001 (2003).

https://doi.org/10.1103/PhysRevD.68.042001

R. Schnabel et al. Squeezed light and laser interferometric gravitational Wave detectors. Classical Quant. Grav. 25, 1045 (2004).

https://doi.org/10.1088/0264-9381/21/5/099

C.M. Caves. Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693 (1981).

https://doi.org/10.1103/PhysRevD.23.1693

M. Xiao et al. Precision measurement beyond the shotnoise limit. Phys. Rev. Lett. 59, 278 (1987).

https://doi.org/10.1103/PhysRevLett.59.278

E.S. Polzik et al. Spectroscopy with squeezed light. Phys. Rev. Lett. 68, 3020 (1992).

https://doi.org/10.1103/PhysRevLett.68.3020

Y. Yamamoto, H.A. Haus. Preparation, measurement and information capacity of optical quantum states. Rev. Mod. Phys. 58, 1001 (1986).

https://doi.org/10.1103/RevModPhys.58.1001

R.E. Slusher, L.W. Hollberg, B. Yurke, J.C. Mertz, J.F. Valley. Observation of squeezed states generated by four-wave mixing in an optical cavity. Phys. Rev. Lett. 56, 788 (1986).

https://doi.org/10.1103/PhysRevLett.56.788

K. Fesseha. Three-level laser dynamics with squeezed light. Phys. Rev. A 63, 033811 (2001).

https://doi.org/10.1103/PhysRevA.63.033811

T. Abebe. Coherently driven nondegenerate three-level laser with noiseless vacuum reservoir. Bulg. J. Phys. 45, 357 (2018).

F. Kassahun. Fundamentals of Quantum Optics (Lulu, 2008).

N. Lu, S.Y. Zhu. Quantum theory of a two-mode twophoton correlated spontaneous-emission laser. Phys. Rev. A 41, 2865 (1990).

https://doi.org/10.1103/PhysRevA.41.2865

C.A. Blockely, D.F. Walls. Intensity fluctuations in a frequency down-conversion process with three-level atoms. Phys. Rev. A 43, 5049 (1991).

https://doi.org/10.1103/PhysRevA.43.5049

E. Alebachew. Continuous-variable entanglement in a nondegenerate three-level laser with a parametric oscillator. Phys. Rev. A 76, 023808 (2007).

https://doi.org/10.1103/PhysRevA.76.023808

N.A. Ansari. Theory of a two-mode phase-sensitive amplifie. Phys. Rev. A 46, 1560 (1992).

https://doi.org/10.1103/PhysRevA.46.1560

G.S. Agrawal, G. Adam. Photon distributions for nonclassical fields with coherent components. Phys. Rev. A 39, 6259 (1989).

https://doi.org/10.1103/PhysRevA.39.6259

S.M. Barnett, P.M. Radmore. Methods in Theoretical Quantum Optics (Oxford University Press, 1997).

N. Lu, S.Y. Zhu. Quantum theory of two-photon correlated-spontaneous-emission lasers: Exact atom-field interaction Hamiltonian approach. Phys. Rev. A 40, 5735 (1989).

https://doi.org/10.1103/PhysRevA.40.5735

E. Alebachew. Enhanced squeezing and entanglement in a non-degenerate three-level cascade laser with injected squeezed light. Opt. Commun. 280, 133 (2007).

https://doi.org/10.1016/j.optcom.2007.08.017

S. Tesfa. Dynamics of the cavity radiation of a correlated emission laser initially seeded with a thermal light. Phys. Scr. 84, 045403 (2011).

https://doi.org/10.1088/0031-8949/84/04/045403

S. Tesfa. Entanglement amplification in a nondegenerate three-level cascade laser. Phys. Rev. A 74, 043816 (2006). https://doi.org/10.1103/PhysRevA.74.043816

B.C. Sanders. Entangled coherent states. Phys. Rev. A 45, 6811 (1992). https://doi.org/10.1103/PhysRevA.45.6811

A. Einstein, B. Podolsky, R. Rosen. Can quantum mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935). https://doi.org/10.1103/PhysRev.47.777

L.M. Duan, G. Giedke, J.J. Cirac, P. Zoller. Inseparability criterion for continuous variable systems. Phys. Rev. Lett. A 84, 2722 (2000). https://doi.org/10.1103/PhysRevLett.84.2722

Downloads

Published

2021-12-20

How to Cite

Alemu, B., Gashu, C., Mosisa, E., & Abebe, T. (2021). Dynamics of the Cavity Radiation of a Correlated Emis-sion Laser Coupled to a Two-Mode Thermal Reservoir. Ukrainian Journal of Physics, 66(12), 1027. https://doi.org/10.15407/ujpe66.12.1027

Issue

Section

Optics, atoms and molecules