Calculation of Nuclear Properties for 56–62Fe Isotopes in the Model Space (HO) Using NuShellX@MSU Code

Authors

  • F.H. Obeed Department of Physics, Faculty of Education for Girls, University of Kufa

DOI:

https://doi.org/10.15407/ujpe66.8.643

Keywords:

yrast energy levels, quadrupole transition probability, NuShellX@MSU code, deformation parameter, rotational frequency, inertia moment

Abstract

The nuclear shell model has been applied to calculate the yrast energy levels, quadrupole transition probability (BE2), deformation parameter B2, rotational energy (hw), and inertia moment (20/h2) for the ground state band. The NuShellX@MSU code has been used to determine the nuclear properties of 56−62Fe isotopes, by using the harmonic oscillator (HO) model space for P (1f7/2), N (2p3/2), N (1f5/2), and N (2p1/2) orbits and (HO) interaction. The results are in good agreement with the available experimental data on the above nuclear properties and all nuclei under study. In addition, the back bending phenomenon has been explained by the calculations, and it has been very clear in 58,60,62Fe nuclei. It has also been confirmed and determined the most spins and parities of energy levels. In these calculations, new values have been theoretically determined for the most nuclear properties which were previously experimentally unknown.

References

J.M. Blatt, V.F. Weisskopf. Theoretical Nuclear Physics (Springer, 1979) [ISBN:13.978-0-486-66827-7].

https://doi.org/10.1007/978-1-4612-9959-2

A.K. Hasan, F.H. Obeed, A.N. Rahim. Positive parity levels of 21,23Na isotopes by using the nuclear shell model. Ukr. J. Phys. 65 (1), 3 ( 2020).

https://doi.org/10.15407/ujpe65.1.3

B.A. Brown, B.H. Wildenthal. Status of the nuclear shell model. Ann. Rev. Nucl. Part. Sci. 38, 29 (1988).

https://doi.org/10.1146/annurev.ns.38.120188.000333

F. Brandolini, C.A. Ur. Shell model description of N ≃ Z1f 7/2 nuclei. Phys. Rev. C 71 (5), 1 (2005).

https://doi.org/10.1103/PhysRevC.71.054316

M. Honma, T. Otsuka, B.A. Brown, T. Mizusaki. Effective interaction for pf-shell nuclei. Phys. Rev. C 65 (6), 1 (2002).

https://doi.org/10.1103/PhysRevC.65.061301

S.N. Liddick, P.F. Mantica, R.V.F. Janssens, R. Broda, B.A. Brown, M.P. Carpenter, B. Fornal, M. Honma, M. Horoi, T. Mizusaki, A.C. Morton, W.F. Mueller, T. Otsuka, J. Pavan, A. Stolz et al. Development of new shell structure in pf-shell nuclei. J. Phys.: Conf. Ser. 49, 013 (2006).

https://doi.org/10.1088/1742-6596/49/1/013

A. Novoselsky, M.Vallieres, O. Laadan. Full fp shell calculation of 51Ca And 51S. Phys. Rev. lett. 79, (22), 4341 (1997).

https://doi.org/10.1103/PhysRevLett.79.4341

P.C. Srivastava, I. Mehrotra. Large scale shell model calculations for odd-odd 58−62Mn isotopes. Eur. Phys. J. A

(2), 185 (2010).

A. Johnson, H. Ryde, J. Sztarkier. Evidence for a singularity in the nuclear rotational band structure. Phys. Lett. B 34 (7), 605 (1971).

https://doi.org/10.1016/0370-2693(71)90150-X

A. Johnson, H. Ryde, S.A. Hjorth. Nuclear moment of inertia at high rotational frequencies. Nucl. Phys. A 179 (3), 753 (1972).

https://doi.org/10.1016/0375-9474(72)90617-3

R.A. Sorensen. Nuclear moment of inertia at high spin. Rev. Mod. Phys. 45 (3), 353 (1973).

https://doi.org/10.1103/RevModPhys.45.353

A.M. Shirokov, A.I. Mazur, J.P. Vary, I.A. Mazur. Oscillator basis, scattering and nuclear structure. J. Phys.: Conf. Ser. 403, 012021 (2012).

https://doi.org/10.1088/1742-6596/403/1/012021

L. Coraggio, A. Covello, A. Gargano, N. Itaco, T.T.S. Kuo. Shell model calculations and realistic effective interactions. Prog. Part. Nucl. Phys. 62 (1), 135 (2009).

https://doi.org/10.1016/j.ppnp.2008.06.001

A. Gargano, L. Coraggio, A. Covello, N. Itaco. Realistic shell model calculations and exotic nuclei. J. Phys.: Conf. Ser. 527, 1 (2014).

https://doi.org/10.1088/1742-6596/527/1/012004

E. Caurier, G.M. Pinedo, F. Nowacki, A. Poves, A.P. Zuker. The shell model as unified view of nuclear structure. Rev. Mod. Phys. 77(2), 427 (2005).

https://doi.org/10.1103/RevModPhys.77.427

B.A. Brown. The nuclear shell model towards the drip lines. Prog. Part. Nucl. Phys. 47(2), 517 (2001).

https://doi.org/10.1016/S0146-6410(01)00159-4

O. Sorlin, M.G. Porque. Nuclear magic numbers: new features far from stability. Prog. Part. Nucl. Phys., 61(2), 602 (2008).

https://doi.org/10.1016/j.ppnp.2008.05.001

P.J. Brussaard, P.W.M. Glademans. Shell Model Application in Nuclear Spectroscopy (North-Holland, 1977) [ISBN-10: 0720403367, ISBN-13: 978-0720403367].

F. Ertugral, E. Guliyev, A.A. Kuliev. Quadrupole moments and deformation parameters of the 166−180Hf, 180−186W and 152−168Sm isotopes. Acta Phys. Pol. A 2-B (128), 254 (2015).

https://doi.org/10.12693/APhysPolA.128.B-254

M. Haberichter, P.H.C. Lau, N.S. Manton. Electromagnetic transition strengths for light nuclei in the skyrme model. Phys. Rev. C 93 (3), 1 (2016).

https://doi.org/10.1103/PhysRevC.93.034304

B. Pritychenko, M. Birch, B. Singh, M. Horoi. Tables of E2 transition probabilities from the first 2+ states in even-even nuclei. At. Data Nucl. Data Tables 107, 1 (2016). https://doi.org/10.1016/j.adt.2015.10.001

S. Raman, C.W. Nestor, JR., P. Tikkanen. Transition probability, B(E2) from the ground to the first-excited 2+ state of even-even nuclides. At. Data Nucl. Data Tables 78 (1), 1 (2001). https://doi.org/10.1006/adnd.2001.0858

S.S.M. Wong. Introductory Nuclear Physics, Edition No. 2 (Wiley, 1990) [ISBN: 978-0-471-23973-4].

I.M. Ahmed, H.Y. Abdullah, S.T. Ahmad, I. Hossain, M.K. Kasmin, M.A. Saeed, N. Ibrahim. The evolution properties of even-even 100−110Pd nuclei. Int. J. Mod. Phys. E 21 (12), 1 (2012).

https://doi.org/10.1142/S0218301312501017

B.A. Brown, W.D.M. Rae.The shell-model code NuShellX@MSU Nucl. Data Sheets 120, 115 (2014). https://doi.org/10.1016/j.nds.2014.07.022

H. Junde, H.Su, Y. Dong. Adopted levels gammas for 56Fe Nucl. Data Sheets 112, 1513 (2011). https://doi.org/10.1016/j.nds.2011.04.004

C.D. Nesaraja, S.D. Geraedts, B.J. Singh. Adopted levels gammas for 58Fe Nucl. Data Sheets 111, 897 (2010). https://doi.org/10.1016/j.nds.2010.03.003

E. Browne, J.K. Tuli. Adopted levels gammas for 60Fe Nucl. Data Sheets 114, 1849 (2013). https://doi.org/10.1016/j.nds.2013.11.002

A.L. Nichols, B. Singh, J.K. Tuli. Adopted levels gammas for 62Fe Nucl. Data Sheets, 113, 973 (2012). https://doi.org/10.1016/j.nds.2012.04.002

Downloads

Published

2021-09-13

How to Cite

Obeed, F. (2021). Calculation of Nuclear Properties for 56–62Fe Isotopes in the Model Space (HO) Using NuShellX@MSU Code. Ukrainian Journal of Physics, 66(8), 643. https://doi.org/10.15407/ujpe66.8.643

Issue

Section

Fields and elementary particles