The Role of Surface-Charge Transport in Electrohydrodynamics and Electromechanics of a Dielectric Sphere
DOI:
https://doi.org/10.15407/ujpe65.6.521Keywords:
dielectrophoresis, electrohydrodynamics, leaky-dielectric modelAbstract
To simulate the electrokinetic processes in weakly-conducting dielectric media, the Taylor–Melcher leaky-dielectric model is widely used, though its applicability conditions are unknown. To define them, the electric-potential distributions inside and outside a dielectric sphere placed in an electric field are determined, by assuming the sphere and the environment are weakly conducting and by considering the electric and diffusion interfacial currents and the surface-charge decay. Earlier, an electric-field characteristic of a dielectric sphere, for example, the real part of the Clausius–Mossotti factor found for a direct current (DC) field was commonly thought to be a single-valued function of two parameters, the conductivities of the sphere and the environment. Now, it depends on a larger number of parameters and, in the dc case, can range from the perfect-dielectric to perfect-conductor values even for a particle of a good insulator. Using the proposed theory, a variety of the experimental results on the electrohydrodynamic (EHD) fluid circulation and dielectrophoretic (DEP) motion of microparticles in the dielectric drops are explained for the first time or in a new way. The dielectrophoretic inflection and cross-over frequencies are defined allowing for the decay of the surface charge. A dependence of the effective conductivity of a sphere on the angular field distribution is predicted for the first time.
References
N.G. Green, H. Morgan. Separation of submicrometre particles using a combination of dielectrophoretic and electrohydrodynamic forces. J. Phys. D 31, L25 (1998). https://doi.org/10.1088/0022-3727/31/7/002
T.B. Jones. Electromechanics of Particles (Cambridge Univ. Press, 1995) [ISBN: 9780521019101]. https://doi.org/10.1017/CBO9780511574498
A.V. Delgado. Interfacial Electrokinetics and Electrophoresis (Dekker, 2001) [ISBN: 0-8247-0603-X]. https://doi.org/10.1201/9781482294668
M.P. Hughes. Nanoelectromechanics in Engineering and Biology (CRC Press, 2003) [ISBN: 0-8493-1183-7].
H.-C. Chang, L. Yeo. Electrokinetically driven Microfluidics and Nanofluidics (Cambridge Univ. Press, 2010) [ISBN: 9780521860253].
A. Ramos. Electrokinetics and Electrohydrodynamics in Microsystems (Springer, 2011) [ISBN: 978-3-7091- 0899-4]. https://doi.org/10.1007/978-3-7091-0900-7
B. Cetin, D. Li. Dielectrophoresis in microfluidics technology. Electrophoresis 32, 2410 (2011). https://doi.org/10.1002/elps.201100167
T.Z. Jubery, S.K. Srivastava, P. Dutta. Dielectrophoretic separation of bioparticles in microdevices: A review. Electrophoresis 35, 691 (2014). https://doi.org/10.1002/elps.201300424
R.R. Pethig. Dielectrophoresis: Theory, Methodology and Biological Applications (Wiley, 2017) [ISBN: 9781118671450]. https://doi.org/10.1002/9781118671443
Q. Chen, Y.J. Yuan. A review of polystyrene bead manipulation by dielectrophoresis. RSC Adv. 9, 4963 (2019). https://doi.org/10.1039/C8RA09017C
S. Nudurupati, M. Janjua, N. Aubry, P. Singh. Concentrating particles on drop surfaces using external electric fields. Electrophoresis 29, 1164 (2008), https://doi.org/10.1002/elps.200700676
S. Nudurupati, M. Janjua, P. Singh, N. Aubry. Effect of parameters on redistribution and removal of particles from drop surfaces. Soft Mat. 6, 1157 (2010). https://doi.org/10.1039/b912723b
P.F. Salipante, P.M. Vlahovska. Electrohydrodynamics of drops in strong uniform dc electric fields. Phys. Fluids 22, 112110 (2010). https://doi.org/10.1063/1.3507919
P. Dommersnes, Z. Rozynek, A. Mikkelsen, R. Castberg, K. Kjerstad, K. Hersvik, J.O. Fossum. Active structuring of colloidal armour on liquid drops. Nat. Comm. 4, 2066 (2013). https://doi.org/10.1038/ncomms3066
Z. Rozynek, P. Dommersnes, A. Mikkelsen, L. Michels, J. Fossum. Electrohydrodynamic controlled assembly and fracturing of thin colloidal particle films confined at drop interfaces, Eur. Phys. J. Spec. Top. 223, 1859 (2014). https://doi.org/10.1140/epjst/e2014-02231-x
H. Yan, L. He, X. Luo, J.Wang, X. Huang, Y. L¨u, D. Yang. Investigation on transient oscillation of droplet deformation before conical breakup under alternating current electric field. Langmuir 31, 8275 (2015). https://doi.org/10.1021/acs.langmuir.5b01642
R. Vaidyanathan, S. Dey, L.G. Carrascosa, M.J.A. Shiddiky, M. Trau. Alternating current electrohydrodynamics in microsystems: Pushing biomolecules and cells around on surfaces. Biomicrofluidics 9, 061501 (2015). https://doi.org/10.1063/1.4936300
E. Amah, K. Shah, I. Fischer, P. Singh. Electro- hydrodynamic manipulation of particles adsorbed on the surface of a drop. Soft Mat. 12, 1663 (2016). https://doi.org/10.1039/C5SM02195B
Q. Brosseau, P. M. Vlahovska. Streaming from the equator of a drop in an external electric field. Phys. Rev. Lett. 119, 034501 (2017). https://doi.org/10.1103/PhysRevLett.119.034501
A. Mikkelsen, K. Khobaib, F.K. Eriksen, K.J. Maloy, Z. Rozynek. Particle-covered drops in electric fields: drop deformation and surface particle organization. Soft Mat. 14, 5442 (2018). https://doi.org/10.1039/C8SM00915E
P.M. Vlahovska. Electrohydrodynamics of drops and vesicles. Ann. Rev. Fluid Mech. 51, 305 (2019). https://doi.org/10.1146/annurev-fluid-122316-050120
L. Novotny, B. Hecht. Principles of nano-optics (Cambridge Univ. Press, 2006) [ISBN: 978-0-511-16811-6]. https://doi.org/10.1017/CBO9780511813535
G. Taylor. Studies in electrohydrodynamics. I. The circulation produced in a drop by electrical field. Proc. Roy. Soc. Lond. A 291, 159 (1966). https://doi.org/10.1098/rspa.1966.0086
J.R. Melcher, G.I. Taylor. Electrohydrodynamics: A review of the role of interfacial shear stresses. Ann. Rev. Fluid Mech. 1, 111 (1969). https://doi.org/10.1146/annurev.fl.01.010169.000551
D.A. Saville. Electrohydrodynamics: The Taylor- Melcher leaky dielectric model. Ann. Rev. Fluid Mech. 29, 27 (1997). https://doi.org/10.1146/annurev.fluid.29.1.27
S. Torza, R.G. Cox, S.G. Mason. Electrohydrodynamic deformation and burst of liquid drops. Phil. Trans. R. Soc. Lond. A 269, 295 (1971). https://doi.org/10.1098/rsta.1971.0032
R. Pethig. Dielectrophoresis: Status of the theory, technology, and applications. Biomicrofluidics 4, 022811 (2010). https://doi.org/10.1063/1.3456626
B.A. Kemp, C.J. Sheppard. Field and material stresses predict observable surface forces in optical and electrostatic manipulation. Proc. SPIE 9922, 9922 (2016). https://doi.org/10.1117/12.2237820
W. Arnold, H. Schwan, U. Zimmermann. Surface conductance and other properties of latex particles measured by electrorotation J. Phys. Chem. 91, 5093 (1987). https://doi.org/10.1021/j100303a043
L. Gorre-Talini, S. Jeanjean, P. Silberzan. Sorting of brownian particles by the pulsed application of an asymmetric potential. Phys. Rev. E 56, 2025 (1997). https://doi.org/10.1103/PhysRevE.56.2025
M.P. Hughes, H. Morgan, M.F. Flynn. The dielectrophoretic behavior of submicron latex spheres: Influence of surface conductance. J. Coll. Int. Sci. 220, 454 (1999). https://doi.org/10.1006/jcis.1999.6542
M. Jim'enez, F. Arroyo, F. Carrique, U. Kaatze, A. Delgado. Determination of stagnant layer conductivity in polystyrene suspensions: temperature effects. J. Coll. Int. Sci. 281, 503 (2005). https://doi.org/10.1016/j.jcis.2004.08.093
A. Delgado, F. Gonz'alez-Caballero, R. Hunter, L. Koopal, J. Lyklema. Measurement and interpretation of electrokinetic phenomena. J. Coll. Int. Sci. 309, 194 (2007). https://doi.org/10.1016/j.jcis.2006.12.075
S. Basuray, H.-C. Chang. Induced dipoles and dielectrophoresis of nanocolloids in electrolytes. Phys. Rev. E 75, 060501 (2007). https://doi.org/10.1103/PhysRevE.75.060501
M.D. Vahey, J. Voldman. High-throughput cell and particle characterization using isodielectric separation. Anal. Chem. 81, 2446 (2009). https://doi.org/10.1021/ac8019575
S. Basuray, H.-C. Chang. Designing a sensitive and quantifiable nanocolloid assay with dielectrophoretic crossover frequencies. Biomicrofluidics 4, 013205 (2010). https://doi.org/10.1063/1.3294575
T. Honegger, K. Berton, E. Picard, D. Peyrade. Determination of Clausius-Mossotti factors and surface capacitances for colloidal particles. Appl. Phys. Lett. 98, 181906 (2011). https://doi.org/10.1063/1.3583441
P.-Y. Weng, I.-A. Chen, C.-K. Yeh, P.-Y. Chen, J.-Y. Juang. Size-dependent dielectrophoretic crossover frequency of spherical particles. Biomicrofluidics 10, 011909 (2016). https://doi.org/10.1063/1.4941853
H.P. Schwan. Electrical properties of tissue and cell suspensions. Adv. Biol. Med. Phys. 5, 147 (1957). https://doi.org/10.1016/B978-1-4832-3111-2.50008-0
C.T. O'Konski. Electric properties of macromolecules. V. Theory of ionic polarization in polyelectrolytes. J. Phys. Chem. 64, 605 (1960). https://doi.org/10.1021/j100834a023
G. Schwarz. A theory of the low-frequency dielectric dispersion of colloidal particles in electrolyte solution. J. Phys. Chem. 66, 2636 (1962). https://doi.org/10.1021/j100818a067
S. Tsukahara, T. Sakamoto, H. Watarai. Positive dielectrophoretic mobilities of single microparticles enhanced by the dynamic diffusion cloud of ions. Langmuir 16, 3866 (2000). https://doi.org/10.1021/la980441k
I. Ermolina, H. Morgan. The electrokinetic properties of latex particles: Comparison of electrophoresis and dielectrophoresis. J. Coll. Int. Sci. 285, 419 (2005). https://doi.org/10.1016/j.jcis.2004.11.003
M.-T.Wei, J. Junio, aH. D. Ou-Yang. Direct measurements of the frequency-dependent dielectrophoresis force. Biomicrofluidics 3, 012003 (2009). https://doi.org/10.1063/1.3058569
S. Basuray, H.-H. Wei, H.-C. Chang. Dynamic double layer effects on ac-induced dipoles of dielectric nanocolloids. Biomicrofluidics 4, 022801 (2010). https://doi.org/10.1063/1.3455720
C.-K. Yeh, J.-Y. Juang,.Dimensional analysis and prediction of dielectrophoretic crossover frequency of spherical particles. AIP Adv. 7, 065304 (2017). https://doi.org/10.1063/1.4985666
K.K. Rangharajan, S. Prakash. Surface-modified microfluidics and nanofluidics. In: Encyclopedia of Nanotechnology (Springer Netherlands, 2014). https://doi.org/10.1007/978-94-007-6178-0_395-2
N.G. Green, H. Morgan. Dielectrophoresis of submicrometer latex spheres. 1. Experimental results. J. Phys. Chem. B 103, 41 (1999). https://doi.org/10.1021/jp9829849
L.A. Rosen, D.A. Saville. Dielectric spectroscopy of colloidal dispersions: Comparisons between experiment and theory. Langmuir 7, 36 (1991). https://doi.org/10.1021/la00049a009
S.S. Dukhin, V.N. Shilov. Dielectric Phenomena and Double Layer in Disperse Systems and Polyelectrolytes (Naukova Dumka, 1972) (in Russian).
A. Korzhenko, M. Tabellout, J. Emery. Dielectric relaxation properties of the polymer coating during its exposition to water. Mat. Chem. Phys. 65, 253 (2000). https://doi.org/10.1016/S0254-0584(00)00214-5
J. Lyklema, A. de Keizer, B.H. Bijsterbosch, G.J. Fleer, M.A. Cohen Stuart. Fundamentals of Interface and Colloid Science. Volume 2: Solid-Liquid Interfaces (Academic Press, 1995) [ISBN: 0-12-460521-9]. https://doi.org/10.1016/S1874-5679(06)80002-4
J. Lyklema, M. Minor. On surface conduction and its role in electrokinetics. Coll. Surf. A 140, 33 (1998). https://doi.org/10.1016/S0927-7757(97)00266-5
A.I. Zhakin. Electrohydrodynamics of charged surfaces. Phys.-Uspekhi 56, 141 (2013). https://doi.org/10.3367/UFNe.0183.201302c.0153
R. Fuchs, F. Claro. Multipolar response of small metallic spheres: Nonlocal theory. Phys. Rev. B 35, 3722 (1987). https://doi.org/10.1103/PhysRevB.35.3722
E. Bichoutskaia, A.L. Boatwright, A. Khachatourian, A.J. Stace. Electrostatic analysis of the interactions between charged particles of dielectric materials. J. Chem. Phys. 133, 024105 (2010). https://doi.org/10.1063/1.3457157
V.V. Datsyuk, O.R. Pavlyniuk. Properties of longitudinal electromagnetic oscillations in metals and their excitation at planar and spherical surfaces. Nanoscale Res. Lett. 12, 473 (2017). https://doi.org/10.1186/s11671-017-2230-6
V.V. Datsyuk, O.M. Tovkach. Optical properties of a metal nanosphere with spatially dispersive permittivity. J. Opt. Soc. Am. B 28, 1224 (2011). https://doi.org/10.1364/JOSAB.28.001224
E.B. Lindgren, H.-K. Chan, A. J. Stace, E. Besley. Progress in the theory of electrostatic interactions between charged particles. Phys. Chem. Chem. Phys. 18, 5883 (2016). https://doi.org/10.1039/C5CP07709E
H. Watarai, T. Sakamoto, S. Tsukahara. In Situ measurement of dielectrophoretic mobility of single polystyrene microparticles. Langmuir 13, 2417 (1997). https://doi.org/10.1021/la961057v
T. Tsukada, T. Katayama, Y. Ito, M. Hozawa. Theoretical and experimental studies of circulations inside and outside a deformed drop under a uniform electric field. J. Chem. Eng. Japan 26, 698 (1993). https://doi.org/10.1252/jcej.26.698
V.V. Datsyuk, O.R. Pavlyniuk. The role of surface conductivity in electro-mechanics of microparticles in a meakly-conducting dielectric drop, in 2019 IEEE 39th International Conference on Electronics and Nanotechnology (EL-NANO, 2019). https://doi.org/10.1109/ELNANO.2019.8783832
G. Supeene, C.R. Koch, S. Bhattacharjee. Deformation of a droplet in an electric field: Nonlinear transient response in perfect and leaky dielectric media. J. Coll. Int. Sci. 318, 463 (2008). https://doi.org/10.1016/j.jcis.2007.10.022
Y.-W. Liu, S. Pennathur, C.D. Meinhart. Electrophoretic mobility of a spherical nanoparticle in a nanochannel. Phys. Fluids 26, 112002 (2014). https://doi.org/10.1063/1.4901330
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.