Mechanical Properties of Tin + 1AlCn Nanolaminates: a Molecular Dynamics Study


  • V. Borysiuk Sumy State University



molecular dynamics, deformation, elastic modulus, strain rate


The behavior of Tin+1AlCn nanolaminates with n = 1, 2, 3 that undergo a tensile deformation has been simulated using classical molecular dynamics methods. While calculating interatomic forces, a combination of two- and three-body potentials together with the embedded-atom method is applied. The stress-strain curves and the approximate values of the elastic moduli for the researched samples are calculated. The strain rate effect on the fracture dynamics is considered, and the corresponding atomistic configurations of examined samples are built.


M.W. Barsoum. The MN+1AXN phases: a new class of solids: thermodynamically stable nanolaminates. Progr. Solid State Chem. 28, 201 (2000).

M.W. Barsoum. MAX Phases: Properties of Machinable Ternary Carbides and Nitrides (Wiley, 2013) [ISBN: 978-3-527-65460-4].

Q. Tang, Z. Zhou, P.W. Shen. Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. J. Am. Chem. Soc. 134, 16909 (2012).

Y. Xie, P.R.C. Kent. Hybrid density functional study of structural and electronic properties of functionalized Tin+1Xn (X=C, N) monolayers. Phys. Rev. B 87, 235441 (2013).

M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi. 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater. 26, 992 (2014).

M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248 (2011).

X.W. Zhou, H.N.G. Wadley, R.A. Johnson, D.J. Larson, N. Tabat A. Cerezo, A.K. Petford-Long, G.D.W. Smith, P.H. Clifton, R.L. Martens, T.F. Kelly. Atomic scale structure of sputtered metal multilayers. Acta Materialia 49, 4005 (2001).

W. Zou, H.N.G. Wadley, X.W. Zhou, S. Ghosal, R. Kosut, D. Brownell. Growth of giant magnetoresistance multilayers: Effects of processing conditions during radio-frequency diode deposition. J. Vac. Sci. Technol. A 19, 2414 (2001).

V.N. Borysiuk, V.N. Mochalin, Y. Gogotsi. Molecular dynamic study of the mechanical properties of two-dimensional titanium carbides Ti(n+1)C(n) (MXenes). Nanotechnology 26, 265705 (2015).

V.N. Borysiuk, V.N. Mochalin. Thermal stability of two-dimensional titanium carbides Ti(n+1)C(n) (MXenes) from classical molecular dynamics simulations. MRS Commun. 9, 203 (2019).

V.N. Borysiuk, V.N. Mochalin, Y. Gogotsi. Bending rigidity of two-dimensional titanium carbide (MXene) nanoribbons: A molecular dynamics study. Comput. Mater. Sci. 143, 418 (2018).

H. Oymak, F. Erkoc. Titanium coverage on a single-wall carbon nanotube: molecular dynamics simulations. Chem. Phys. 300, 277 (2004).

J.E. Jones. On the determination of molecular fields. II. From the equation of state of a gas. Proc. R. Soc. Lond. A. 106, 463 (1924).

B.M. Axilrod, E. Teller. Interaction of the van der Waals type between three atoms. J. Chem. Phys. 11, 299 (1943).

N. Sasaki, K. Kobayashi, M. Tsukada. Atomic-scale friction image of graphite in atomic-force microscopy. Phys. Rev. B 143, 2138 (1996).

H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak. Molecular-dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684 (1984).

D.H. Tsai. The virial theorem and stress calculation in molecular dynamics. J. Chem. Phys. 70, 1375 (1979).

A.Hadizadeh Kheirkhah, E.Saeivar Iranizad, M.Raeisi, A.Rajabpour. Mechanical properties of hydrogen functionalized graphene under shear deformation: A molecular dynamics study. Solid State Commun. 177, 98 (2014).

V. Borysiuk, I. Lyashenko. Modeling of the elastic properties of the core-shell Au-Ag nanorod. In Proceedings of the IEEE 36th International Conference on Electronics and Nanotechnology (ELNANO-2016) (Springer, Wiley, 2016), p. 118.

A.G. Zhou, M.W. Barsoum, S. Basu, S.R. Kalidindi, T. El-Raghy. Incipient and regular kink bands in fully dense and 10 vol.% porous Ti2AlC. Acta Materialia 54, 1631 (2006).

A.G. Zhou, M.W. Barsoum. Kinking nonlinear elastic deformation of Ti3AlC2, Ti2AlC, Ti3Al(C0.5,N0.5)2 and Ti2Al(C0.5,N0.5). J. Alloy. Compd. 498, 62 (2010).



How to Cite

Borysiuk, V. (2020). Mechanical Properties of Tin + 1AlCn Nanolaminates: a Molecular Dynamics Study. Ukrainian Journal of Physics, 65(12), 1109.



Structure of materials