Hydrogel-Silver Nanoparticle Composites for Biomedical Applications


  • O. Nadtoka Taras Shevchenko National University of Kyiv
  • N. Kutsevol Taras Shevchenko National University of Kyiv
  • T. Bezugla Taras Shevchenko National University of Kyiv
  • P. Virych Taras Shevchenko National University of Kyiv
  • A. Naumenko Taras Shevchenko National University of Kyiv




silver nanoparticles, hydrogel, polyacrylamide, TEM, FTIR, UV–Vis spectroscopy


Polyacrylamide and dextran-graft-polyacrylamide hydrogels are prepared and used as nanoreactors and networks for the synthesis of silver nanoparticles (AgNPs). Photochemical generation of AgNPs is carried out under UV-irradiation of Ag+ ions in swollen hydrogels of different cross-linking densities. The obtained hydrogels and hydrogel/AgNPs composites are characterized by TEM, FTIR, and UV–Vis spectroscopy. Swelling studies have shown a relationship between the structure of the hydrogels and their ability to swell. It is shown that the presence of AgNPs in the polymer network leads to a decrease of the swelling capacity. An increase in the cross-linking density leads to an expansion of the AgNPs size distribution for both types of hydrogels. All synthesized hydrogel-silver nanoparticle composites have shown a high activity in the growth retardation of Staphylococcus aureus microorganisms.


K. Pal, A.K. Banthia, D.K. Majumdar. Polymeric hydrogel: Characterizatiоn and biomedical applications. Design. Monom. Polym. 12 (3), 197 (2009). https://doi.org/10.1163/156855509X436030

M. Biondi, A. Borzacchiello, L. Mayol, L. Ambrosio. Nanoparticle-integrated hydrogels as multifunctional composite materials for biomedical applications. Gels 1, 162 (2015). https://doi.org/10.3390/gels1020162

J. Bai, Y. Li, J. Du, S. Wang, J. Zheng, Q. Yang, X. Chen. One-pot synthesis of polyacrylamide-gold nanocomposite. Mater. Chem. Phys. 106, 412 (2007). https://doi.org/10.1016/j.matchemphys.2007.06.021

C. Kinnear, T.L. Moore, L. Rodriguez-Lorenzo, B. Rothen-Rutishauser, A. Petri-Fink. Form follows function: Nanoparticle shape and its implications for nanomedicine. Chem. Rev. 117, 11476 (2017). https://doi.org/10.1021/acs.chemrev.7b00194

P.J.G. Goulet, R.B. Lennox. New insights into Brust-Schiffrin metal nanoparticle synthesis. J. Am. Chem. Soc. 132, 9582 (2010). https://doi.org/10.1021/ja104011b

D.D. Evanoff, G. Chumanov. Synthesis and optical properties of silver nanoparticles and arrays. Chem. Phys. Chem. 6, 1221 (2005). https://doi.org/10.1002/cphc.200500113

X.-F. Zhang, Zh.-G. Liu, W. Shen, S. Gurunathan. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci. 17, 1534 (2016). https://doi.org/10.3390/ijms17091534

S. Agnihotri, S. Mukherji, S. Mukherji. Antimicrobial chitosan-PVA hydrogel as a nanoreactor and immobilizing matrix for silver nanoparticles. Appl. Nanosci. 2 (3), 179 (2012). https://doi.org/10.1007/s13204-012-0080-1

Z.S. Pillai, P.V. Kamat. What factors control the size and shape of silver nanoparticles in the citrate ion reduction method? J. Phys. Chem. B 108, 945 (2004). https://doi.org/10.1021/jp037018r

A.K. Suresh, D.A. Pelletier, W. Wang, J.L. Morrell-Falvey, B. Gu, M.J. Doktycz. Cytotoxicity induced by engineered silver nanocrystallites is dependent on surface coatings and cell types. Langmuir 28, 2727 (2012). https://doi.org/10.1021/la2042058

P. Schlinkert, E. Casals, M. Boyles, U. Tischler, E. Hornig, N. Tran, J. Zhao, M. Himly, M. Riediker, G.J. Oostingh, et al. The oxidative potential of differently charged silver and gold nanoparticles on three human lung epithelial cell types. J. Nanobiotechnol. 13, 1 (2015). https://doi.org/10.1186/s12951-014-0062-4

P. Thoniyot, M.J. Tan, A.A. Karim, D.J. Young, X.J. Loh, Nanoparticle-hydrogel composites: Concept, design and applications of these promising, multfunctional materials. Adv. Sci. 2 (1-2), 1400010 (2015). https://doi.org/10.1002/advs.201400010

V. Thomas, M. Namdeo, Y.M. Mohan, S.K. Bajpai, M. Bajpai, Review on polymer, hydrogel and microgel metal nanocomposites: A facile nanotechnological approach. J. Macromol. Sci. Pure Appl. Chem. 45, 107 (2008). https://doi.org/10.1080/10601320701683470

A.K. Gaharwar, N.A. Peppas, A. Khademhosseini. Nanocomposite hydrogels for biomedical applications. Biotechnol. Bioeng. 111, 441 (2014). https://doi.org/10.1002/bit.25160

S. Xu, L. Deng, J. Zhang, L.Yin, A. Dong. Composites of electrospun-fibers and hydrogels: A potential solution to current challenges in biological and biomedical field. J. Biomed. Mater. Res. B 104 (3), 640 (2015). https://doi.org/10.1002/jbm.b.33420

O. Nadtoka, N. Kutsevol, V. Krysa, B. Krysa. Hybrid polyacryamide hydrogels: Synthesis, properties and prospects of application. Mol. Cryst. Liq. Cryst. 672 (1), 1 (2018). https://doi.org/10.1080/15421406.2018.1542089

L. Bulavin, N. Kutsevol, V. Chumachenko, D. Soloviov, A. Kuklin, A. Marinin. SAXS combined with UV-vis spectroscopy and QUELS: accurate characterization of silver sols synthesized in polymer matrices. Nanoscale Res. Lett. 11, 35 (2016). https://doi.org/10.1186/s11671-016-1230-2

N. Kutsevol, J.M. Guenet, N. Melnyk, D. Sarazin, C. Rochas. Solution properties of dextran-polyacrylamide graft copolymers. Polymer 47, 2061 (2006). https://doi.org/10.1016/j.polymer.2006.01.024

M. Bezuglyi, N. Kutsevol, M. Rawiso, T. Bezugla. Water-soluble branched copolymers dextran-polyacrylamide and their anionic derivates as matrices for metal nanoparticles in-situ synthesis. Chemik 8 (66), 862 (2012).

P. Murthy, Y. Murali Mohan, K. Varaprasad, B.Sreedhar, K. Mohana Raju. First successful design of semi-IPN hydrogel-silver nanocomposites: a facile approach for antibacterial application. J. Colloid. Interface Sci. 318 (2), 217 (2008). https://doi.org/10.1016/j.jcis.2007.10.014

K.Varaprasad, Y. Murali Mohan, S. Ravindra, N. Narayana Reddy, K. Vimala, K. Monika, B. Sreedhar, K. Mohana Raju. Hydrogel-silver nanoparticle composites: a new generation of antimicrobials. J. App. Polymer Sci. 115, 1199 (2010). https://doi.org/10.1002/app.31249

S.H. Lee, B.-H. Jun. Silver nanoparticles: synthesis and application for nanomedicine. Int. J. Mol. Sci. 20 (4), 865 (2019). https://doi.org/10.3390/ijms20040865




How to Cite

Nadtoka, O., Kutsevol, N., Bezugla, T., Virych, P., & Naumenko, A. (2020). Hydrogel-Silver Nanoparticle Composites for Biomedical Applications. Ukrainian Journal of Physics, 65(5), 446. https://doi.org/10.15407/ujpe65.5.446



Physics of liquids and liquid systems, biophysics and medical physics

Most read articles by the same author(s)