Optical Characteristics and Plasma Parameters of the Gas-Discharge Radiator Based on a Mixture of Cadmium Diiodide Vapor and Helium

Authors

  • A.A. Malinina Uzhgorod National University
  • A.K. Shuaibov Uzhgorod National University
  • A.N. Malinin Uzhgorod National University

DOI:

https://doi.org/10.15407/ujpe66.2.141

Keywords:

barrier discharge, gas-discharge plasma, radiation emission by exciplex molecules, plasma parameters, cadmium diiodide, helium

Abstract

The optical characteristics and plasma parameters have been found for the gas-discharge radiator emitting in the red spectral interval and operating on a mixture of cadmium diiodide vapor and helium. The reduced electric field strength at which the specific discharge power spent for the excitation of exciplex cadmium monoiodide molecules is maximal is determined as well. Additional processes of population of the upper B2Σ+1/2-state of exciplex cadmium monoiodide molecules giving rise to the radiation power growth have been revealed. The research results can be used to create a more efficient gas-discharge radiator emitting in the red spectral interval.

References

A.A. Abdulaev, V.E. Semenenko. Intensive culture Dunaliella salina Teod. and some of its physiological characteristics. Fiziol. Rasten. 27, No. 6, 31 (1980) (in Russian).

A.I. Sakevich. Exometabolites of Freshwater Microalgae (Naukova Dumka, 1985) (in Russian).

F.G. Baksht, V.F. Lapshin, Energy balance of a pulsed emitting sodium-vapor/xenon discharge. Techn. Phys. 42, 1004 (1997).

https://doi.org/10.1134/1.1258781

V.B. Basov. LEDs: Their advantages and shortcomings. Elektro Elektrotechn. Elektroenerg. Elektrotechn. Promyshl. No. 6, 34 (2010) (in Russian).

A.N. Malinin, A.V. Polyak, N.N. Guyvan, N.G. Zubrilin, L.L. Shimon. Coaxial HgI excilamps. Kvant. Elektron. 32, 155 (2002) (in Russian).

https://doi.org/10.1070/QE2002v032n02ABEH002147

G. Zissis, S. Kitsinelis, State of art on the science and technology of electrical light sources: From the past to the future. J. Phys. D 42, 173001 (2009).

https://doi.org/10.1088/0022-3727/42/17/173001

U. Kogelschatz. Ultraviolet excimer radiation from nonequilibrium gas discharges and its application in photophysics, photochemistry and photobiology. J. Opt. Technol. 79, 484 (2012).

https://doi.org/10.1364/JOT.79.000484

V.S. Shevera, A.N. Malinin, A.K. Shuaibov. Investigation of the excitation and quenching of the CdI* state in the

pulsed dielectric discharge. Zh. Prikl. Spektrosk. 39, 476 (1983) (in Russian).

A.N. Konoplev, V.A. Kelman, V.S. Shevera. Investigation of the radiation of pulse discharge in mixtures of ZnI2, CdI2, and HgI2 with helium and neon. Zh. Prikl. Spektrosk. 39, 315 (1983) (in Russian).

S.P. Bogacheva, A.N. Konoplev, A.I. Khodanich, V.S. Shevera, The population of excited atoms and molecules in gas-discharge Ne-CdI2 plasma. Ukr. Fiz. Zh. 37, 678 (1992) (in Russian).

Tables of Physical Quantities. Edited by I.K. Kikoin (Atomizdat, 1976) (in Russian).

A.O. Malinina, A.K. Shuaibov, O.M. Malinin. Mechanism enhancing the emission power of gas-discharge lamps based on mixtures of neon, nitrogen, and mercury dichloride vapor in the blue-green spectral interval. Ukr. J. Phys. 64, 797 (2019).

https://doi.org/10.15407/ujpe64.9.803

R.W. Pears, A.G. Gaydon. The Identification of Molecular Spectra (Chapman and Hall, 1963).

A.N. Zaidel, V.K. Prokof'ev, S.M. Raiskii, V.A. Slavnyi, E.Ya. Shreider. Tables of Spectral Lines (Springer, 1970).

https://doi.org/10.1007/978-1-4757-1601-6

G.J.M. Hagelaar, L.C. Pitchford. Solving the Boltzmann equation to obtain electron transport coefficients and rate

coefficients for fluid models. Plasma Sourc. Sci. Technol. 14, 722 (2005).

https://doi.org/10.1088/0963-0252/14/4/011

M.M. Mkrtchyan, V. T. Platonenko. Kinetics of gas-discharge XeF excimer laser. Kvant. Elektron. 6, 1639 (1979) (in Russian).

https://www.bolsig.laplace.univ-tlse.fr/.

A.N. Konoplev, N.N. Chavarga, V.N. Slavik, V.S. Shevera. Dissociative excitation of CdI2 by electron impact. Pis'ma

Zh. Tekhn. Fiz. 15, 48 (1989) (in Russian).

A.N. Konoplev, V.N. Slavik, V.S. Shevera. Dissocative ionization of CdI2 molecules by electron impact. Pis'ma Zh. Tekhn. Fiz. 16, 86 (1990) (in Russian).

V.S. Shevera, A.N. Malinin, A.K. Shuaibov. Investigation of the excitation and quenching of the CdI* state in a pulsed discharge through an insulator. Zh. Prikl. Spektrosk. 39, 476 (1983) (in Russian).

Yu.M. Smirnov. Inelastic collisions of slow electrons with cadmium (II) iodide molecules. Khim. Vysok. Energ. 34, 405 (2000) (in Russian).

W.R. Wadt. The electronic structure of HgCl2 and HgBr2 and its relationship to photodissociation. J. Chem. Phys. 72, 2469 (1980).

https://doi.org/10.1063/1.439442

W.L. Nighan, R.T. Brown. Kinetic processes in the HgBr(B-X)HgBr dissociation laser. J. Appl. Phys. 53, 7201 (1982).

https://doi.org/10.1063/1.331616

A.M. Boichenko, M.I. Lomaev, A.N. Panchenko et al. Ultraviolet and Vacuum Ultraviolet Excilamps: Physics, Technology, and Application (State Tomsk Univ., 2011) (in Russian).

V.V. Datsyuk, I.A. Izmailov, V.A. Kochelap. Vibrational relaxation of excimers, Physics-Usp. 41, 379 (1998).

https://doi.org/10.1070/PU1998v041n04ABEH000384

Yu.P. Raizer. Gas Discharge Physics (Springer, 1997).

M.N. Ediger, A.W. McCown, J.G. Eden. CdI and CdBr photodissosiation lasers at 655 and 811 nm: CdI spectrum

identification and enhanced laser output with 114CdI2. Appl. Phys. Lett. 40, 99 (1982).

https://doi.org/10.1063/1.93005

Yu.S. Akishev, A.V. Demyanov, V.B. Karalnik et al. Pulsating regime of a diffuse mode of a barrier discharge in He. Fiz. Plazmy 27, 176 (2001) (in Russian).

https://doi.org/10.1134/1.1348495

Published

2021-03-04

How to Cite

Malinina, A., Shuaibov, A., & Malinin, A. (2021). Optical Characteristics and Plasma Parameters of the Gas-Discharge Radiator Based on a Mixture of Cadmium Diiodide Vapor and Helium. Ukrainian Journal of Physics, 66(2), 141. https://doi.org/10.15407/ujpe66.2.141

Issue

Section

Plasma physics