Use of Spectroscopy and Computer Simulation to the Study of Surfaces Modified by Ionic Implantation

Authors

  • D.Yu. Nikolaieva Junior Academy of Sciences of Ukraine
  • V.V. Honcharov Department of Medical and Biological Physics, Medical Informatics and Biostatistics, Lugansk State Medical University
  • D.Yu. Ivashin Taras Shevchenko National University of Kyiv
  • V.O. Zazhigalov Department of oxidative heterogeneous-catalytic processes, Institute for Sorption and Problems of Endoecology of Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe66.6.511

Keywords:

XPS, energy dispersion spectrometry, implant, nanoscale surface modification, ionic implantation, computer simulation, hardness

Abstract

Using X-ray Photoelectron Spectroscopy (XPS) and energy dispersion spectrometry, the phase and elemental compositions of the nanoscale surface layer of implants are studied. The method of determination of the optimal mode of nanoscale modification of the surfaces of metals and alloys by means of the ionic implantation is presented. The problem of processing the curved surfaces with mathematical calculations and a computer simulation is solved. The proposed technique is tested on synthesized implants. The sample hardness was taken as a criterion.

References

Surface Modifi cation and Alloying by Laser, Ion, and Electron Beams. Edited by J.M. Poate, G. Foti, D.C. Jacobson (Plenum Press, 1983).

L.B. Begrmabekov. Modifi cation of the Surface of Solids at the Ion and Plasma Actions (MIFI, 2001) (in Russian).

B.A. Kalin. Radiation-beam technologies for the treatment of structural materials. Fiz. Khim. Obrab. Mater. 4, 5 (2001).

V.G. Abdrashitov, V.V. Ryzhov. Optimum modes of activation of surfaces by the method of ion implantation. Poverkhn. Fiz., Khim., Mekk. 7, 148 (1989).

N.Yu. Bogdanov. Nanostructurization of Metallic Materials by Intensive Ion Beams, PhD Thesis (N.E. Bauman MSTU, 2008) (in Russian).

A.A. Nikitin, N.G. Travina. Ion implantation of metals and alloys. Byul. CsIICH 23 (1986).

D.V. Vitalskiy. Modifi cation and Operation Properties of the Surfaces of Details of Machines and Tools at the Ion

Implantation of Nitrogen, PhD Thesis (Tula State Univ., 2007) (in Russian).

J. Pout, K. Tu, Djzh. Mejer, R. Rozenberg, M. Sallivan, J. Govard, Dzh. Fillips, Dzh. Mak-Kaldin, T. Mak-Gill, S. Lau, D. Gupta, D. Kempbell, P. Ho, F. D'Erl, j. Beglin, A. Sinha, V. Van der Veg, E. Nikollian, S. Majers. Thin Films - Mutual Diffusion and Reactions (Mir, 1982).

V.O. Zazhigalov, V.V. Honcharov. Honcharov, The formatior of nano-sized coating on the 12Cn18Ni10Te steel during ion implantatiot. Metallofi z. Nov. Tekhnol. 36 (6), 757 (2014).

https://doi.org/10.15407/mfint.36.06.0757

V. Honcharov, V. Zazhigalov, Z. Sawlowicz, R. Socia, J. Gurgol. Structural, catalytic and thermal properties of stainless steel with nanoscale metals surface layer. In: Nanophysics, Nanomaterials, Interface Studies, and Applications. Edited by O. Fesenko, L. Yatsenko (Springer, 2017) [ISBN: 978-3-319-56422-7].

https://doi.org/10.1007/978-3-319-56422-7_26

V.V. Goncharov, V.A. Zazhigalov. A synthesis and thermo-physical properties of samples from 12H18N10T steel after ionic implantation of aluminum. Modern Scie.: Resear., Ideas, Results, Technol. 2 (7), 178 (2011).

https://doi.org/10.23877/MS.TS.8.032

Tae June Kang, Jeong-Gil Kim, Ho-Young Lee, Jae-Sang Lee, Jae-Hyung Lee, Jun-Hee Hahn, Yong Hyup Kim. Modification of optical and mechanical surface properties of sputter-deposited aluminum thin films through ion implantation. IJPEM 15 (5), 889, (2014).

https://doi.org/10.1007/s12541-014-0413-y

V.N. Popok, V.B. Odzhaev, I.P. Kozlov, I.I. Azarko, I.A. Karpovich, D.V. Sviridov. Ion beam effects in polymer films: Structure evolution of the implanted layer. Nucl. Instr. Meth. B 129, 60 (1997).

https://doi.org/10.1016/S0168-583X(97)00208-5

I. Bert'oti. Nitrogen modifi ed metal oxide surfaces. CT 18 (1), 95 (2012). https://doi.org/10.1016/j.cattod.2011.06.017

T.R. Rautray, R. Narayanan, K.H. Kim. Ion implantation of titanium-based biomaterials. Progr. Mater. Sci. 56 (8), 1137 (2011). https://doi.org/10.1016/j.pmatsci.2011.03.002

M.A. Parfenok, A.P. Telegin. Source of a beam of ions. arXiv: RU 2 248 642 C1 [https://findpatent.ru/Patent/224/2248642.html].

J. Dudognon, M. Vayer, A. Pineau, R. Erre. Grazing incidence X-ray diffraction spectra analysis of expanded austenite for implanted stainless stesl. Surf. Coating Techn. 202 (20), 5048 (2008). https://doi.org/10.1016/j.surfcoat.2008.05.015

J. Dudognsn, M. Vayer, A. Pineau, R. Erre. Mo and Ag ion implantation in austenitic, ferritic and duplex stainless steels: A comparative study. Surf. Coat. Techn. 203 (1), 180 (2008). https://doi.org/10.1016/j.surfcoat.2008.08.069

P. Stefanov, D. Stoychev, A. Aleksandrova, D. Nicolova, G. Atanasova, Ts. Marinova. Compositional and structural characterization of alumina coatings deposited electrochemically on stainless steel. Appl. Surf. Sei. 235 (1-2), 80 (2004). https://doi.org/10.1016/j.apsusc.2004.05.119

Y. Adraider, Y.X. Pang, F. Nabhani, S.N. Hodgson, Z.Y. Zhang. Laser-induced deposition of sol-gel alumina coating onstainless steel under wet condition. Surf. Coat. Technol. 205 (23-24), 5345 (2011). https://doi.org/10.1016/j.surfcoat.2011.05.044

A.A. Cherny, S.V. Maschenko, V.V. Honcharov, V.A. Zazhigalov. Nanodimension layers on stainless steel surface synthesized by ionic implantation and their simulation. In: Nanoplasmonics, Nano-Optics, Nanocomposites, and Surface Studies. Edited by O. Fesenko, L. Yatsenko (Springer, 2015). https://doi.org/10.1007/978-3-319-18543-9_12

XPS Data Base. THERMO Electron France Lds Mimosas, 16 Av eu Quebec SILIC 765, 91963, COUTRABOEUF CEDEX, 175 p.

Downloads

Published

2021-07-06

How to Cite

Nikolaieva, D., Honcharov, V., Ivashin, D., & Zazhigalov, V. (2021). Use of Spectroscopy and Computer Simulation to the Study of Surfaces Modified by Ionic Implantation. Ukrainian Journal of Physics, 66(6), 511. https://doi.org/10.15407/ujpe66.6.511

Issue

Section

Surface physics