How Laser Physics Brought Optics to the World of Photonic Crystals

  • I. P. Ilchyshyn Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • E. A. Tikhonov Institute of Physics, Nat. Acad. of Sci. of Ukraine
Keywords: chiral liquid crystal, planar texture, photonic crystal, transmission spectrum, fluorescence, lasing spectrum

Abstract

A brief review of authors’ research is presented. An emphasis is made on the photon localization in the helical structure of a chiral liquid crystal (CLC), which was first experimentally registered by the authors. An analysis of the spectral and lasing characteristics of distributed feedback (DF) lasers based on natural CLCs (type 1) and on chiral nematics (type 2) led to a conclusion that the model of photonic crystal is suitable to describe the lasing mechanism in type-2 CLC lasers, but not in type-1 ones. This conclusion is evidenced by the absence of lasing bands at the opposite edges of the selective reflection (SR) band; at the same time, the lasing line is located at its center. It is shown that if the SR band of the CLC overlaps the maximum of the laser dye fluorescence band, the lasing line coincides with the SR band center to an error of ±1 nm. If the layer thickness in the CLC lasers of both types does not exceed 50 мm, when a high-quality planar texture is retained and a low generation threshold is achieved, a significant difference between their optical characteristics takes place. Namely, the SR spectrum for a type-1 CLC laser is approximately described by a Lorentzian profile, whereas the contour of the SR spectrum for a type-2 CLC laser has a profile characteristic of the transmittance through multilayer dielectric mirrors. The origins of the differences between the optical and laser characteristics of the CLC lasers of both types have been analyzed from the viewpoint of two lasing models: DF and photonic-crystal ones.

References

V.P. Bykov. Spontaneous emission in a periodic structure. Zh. 'Eksp. Teor. Fiz. 62, 505 (1972) (in Russian).

R. Dreher, H. Schomburg. Prolongation of fluorescence decay time by structural changes of the environment of the emitting molecule. Chem. Phys. Lett. 25, 527 (1974). https://doi.org/10.1016/0009-2614(74)85359-5

E. Yablonovitch. Inhibited spontaneous emission in solid state physics and electronics. Phys. Rev. Lett. 58, 2059 (1987). https://doi.org/10.1103/PhysRevLett.58.2059

I.P. Ilchishin,E.A.Tikhonov,V.G.Tishchenko,M.T. Shpak. Generation of a tunable radiation by impurity cholesteric liquid crystals. JETP Lett. 32, 27 (1980).

I.P. Ilchishin, A.G. Kleopov, E.A. Tikhonov, M.T. Shpak. Stimulated tunable radiation in an impurity cholesteric liquid crystal. Bull. Acad. Sci. USSR Phys. Ser. 45, 13 (1981).

R.G. Hulet, E.S. Hilfer, D. Kleppner. Inhibited spontaneous emission by a Rydberg atom. Phys. Rev. Lett. 55, 2137 (1985). https://doi.org/10.1103/PhysRevLett.55.2137

A.F. Munoz, P. Palffy-Muhoray, B. Taheri. Ultraviolet lasing in cholesteric liquid crystals. Opt. Lett. 26, 804 (2001). https://doi.org/10.1364/OL.26.000804

J. Schmidtke, W. Stille, H. Finkelmann, S.T. Kim. Laser emission in a dye doped cholesteric polymer network. Adv. Mater. 14, 746 (2002). https://doi.org/10.1002/1521-4095(20020517)14:10<746::AID-ADMA746>3.0.CO;2-5

L.-J. Chen, J.-D. Lina, C.-R. Lee. An optically stable and tunable quantum dot nanocrystal-embedded cholesteric liquid crystal composite laser. J. Mater. Chem. C 2, 4388 (2014). https://doi.org/10.1039/C4TC00128A

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol, M. Pinol. Widely tunable ultraviolet-visible liquid crystal laser. Appl. Phys. Lett. 86, 051107 (2005). https://doi.org/10.1063/1.1855405

I. Ilchishin, L. Lysetskiy, T. Mykytiuk, M. Serbina, G. Chilaya. UV-radiation cotrolled tunable cholesteric dye laser based on an azoxy nematic matrix. Mol. Cryst. Liq. Cryst. 542, 221 (2011). https://doi.org/10.1080/15421406.2011.570598

M.-Y. Jeong, K. Kwak. Active thermal fine laser tuning in a broad spectral range and optical properties of cholesteric liquid crystal. Appl. Opt. 65, 9378 (2016). https://doi.org/10.1364/AO.55.009378

I.P. Ilchishin. Optimizing energy output and angular divergence of a DFB laser with cholesteric liquid crystal. Bull. Russ. Acad. Sci. Phys. 60, 494 (1996).

I. Ilchishin. Spectral and lasing characteristics of the dye-doped cholesteric liquid crystals as the materials for laser projection screens. Proc. SPIE 5507, 368 (2004). https://doi.org/10.1117/12.570017

K. Dolgaleva, S.K.H. Wei, S.G. Lukishova, Sh.H. Chen, K. Schwertz, R.W. Boyd. Enhanced laser performance of cholesteric liquid crystals doped with oligofluorene dye. J. Opt. Soc. Am. B 25, 1496 (2008). https://doi.org/10.1364/JOSAB.25.001496

I.P. Ilchishin, E.A. Tikhonov, M.T. Shpak. Damage to the planar texture of absorbing cholesteric liquid crystals by pulsed laser radiation. Sov. J. Quant. Electron. 17, 1567 (1987). https://doi.org/10.1070/QE1987v017n12ABEH011289

V.A. Belyakov, S.V. Semenov. Optical defect modes in chiral liquid crystals. JETP 112, 694 (2011). https://doi.org/10.1134/S1063776111030022

V.I. Kopp, Z.Q. Zang, A.Z. Genack. Lasing in chiral photonics structures. Progr. Quant. Electron. 27, 369 (2003). https://doi.org/10.1016/S0079-6727(03)00003-X

G.E. Nevskaya, S.P. Palto, M.G. Tomilin. Microlasers on liquid crystals.Sov. J. Opt. Techn. 77, 13 (2010). https://doi.org/10.1364/JOT.77.000473

R. Bartolino, L.M. Blinov. Liquid crystal microlasers (introductory notes). In: Liquid Crystal Microlasers. Edited by L.M. Blinov, R.Bartolino (Transworld Research Network, 2010), p. 1.

I.P. Ilchishin, E.A. Tikhonov. Dye-doped cholesteric lasers: Distributed feedback and photonic band gap lasing models. Progr. Quant. Electron. 41, 1 (2015). https://doi.org/10.1016/j.pquantelec.2015.02.001

E.A. Tikhonov, I.P. Ilchishin. Resonance nonlinear optical properties of dye- doped liquid crystals under pulse excitation: Insight into early experiments. J. Mol. Liq. 267, 73 (2018). https://doi.org/10.1016/j.molliq.2018.02.070

H. Kogelnik, S.V. Shank. Coupled-wave theory of distributed feedback lasers. J. Appl. Phys. 43, 2327 (1972). https://doi.org/10.1063/1.1661499

N.V. Kukhtarev. Cholesteric liquid crystal laser with distributed feedback. Sov. J. Quant. Electron. 8, 774 (1978). https://doi.org/10.1070/QE1978v008n06ABEH010397

H.P. Preiswerk, M. Lubanski, S. Gnepf , F.K. Kneubuhl. Group theory and realization of a helical distributed feedback laser. IEEE J. Quant. Electron. QE-19, 1452 (1983). https://doi.org/10.1109/JQE.1983.1072049

J.P. Dowling, M. Scalora, M.J. Bloemer, C.M. Bowden. The photonic band edge laser: A new approach to gain enhancement. J. Appl. Phys. 75, 1896 (1994). https://doi.org/10.1063/1.356336

V.I. Kopp, B. Fan, H.K.M. Vithana, A.Z. Genak. Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals. Opt. Lett. 23, 1707 (1998). https://doi.org/10.1364/OL.23.001707

Yu.V. Denisov, V.A. Kizel, E.P. Sukhenko. Investigation of ordering of the mesophase of cholesteric liquid crystals on basis of their optical parameters. Zh. ' Eksp. Teor. Fiz. 71, 679 (1976) (in Russian).

V.A. Kizel, S. I. Kudashev. Ordering mechanism in cholesteric liquid crystals. Zh. ' Eksp. Teor. Fiz. 72, 2180 (1977) (in Russian).

I.P. Ilchyshyn, E.A. Tikhonov, T.V. Mykytiuk. Spectral-beam features of radiation emitted by a cholesteric liquid crystal laser. Ukr. J. Phys. 63, 339 (2018). https://doi.org/10.15407/ujpe63.4.339

Published
2020-04-17
How to Cite
Ilchyshyn, I., & Tikhonov, E. (2020). How Laser Physics Brought Optics to the World of Photonic Crystals. Ukrainian Journal of Physics, 65(4), 327. https://doi.org/10.15407/ujpe65.4.327
Section
Optics, atoms and molecules