Phase Behavior of a Cell Fluid Model with Modified Morse Potential

Authors

  • M. P. Kozlovskii Institute for Condensed Matter Physics, Nat. Acad. of Sci. of Ukraine
  • O. A. Dobush Institute for Condensed Matter Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe65.5.428

Keywords:

cell fluid model, coexistence curve, collective variables, equation of state, first-order phase transition

Abstract

The present article gives a theoretical description of a first-order phase transition in the cell fluid model with a modified Morse potential and an additional repulsive interaction. In the framework of the grand canonical ensemble, the equation of state of the system in terms of chemical potential–temperature and terms of density–temperature is calculated for a wide range of the density and temperature. The behavior of the chemical potential as a function of the temperature and density is investigated. The maximum and minimum admissible values of the chemical potential, which approach each other with decreasing the temperature, are exhibited. The existence of a liquid-gas phase transition in a limited temperature range below the critical Tc is established.

References

A.J. Schultz, D.A. Kofke. Vapor-phase metastability and condensation via the virial equation of state with extrapolated coefficients. Fluid Phase Equilibria 409, 12 (2016). https://doi.org/10.1016/j.fluid.2015.09.016

A.J. Masters. Virial expansions. J. Phys.: Condens. Matter 20, 283102 (2008). https://doi.org/10.1088/0953-8984/20/28/283102

M.V. Ushcats. Modified Lennard-Jones model: Virial coefficients to the 7th order. J. Chem. Phys. 140, 234309 (2014). https://doi.org/10.1063/1.4882896

D. Pini, G. Stell, N.B. Wilding. A liquid-state theory that remains successful in the critical region. Mol. Phys. 95, 483 (1998). https://doi.org/10.1080/00268979809483183

C.-L. Lee, G. Stell, J. Hoye. A simple SCOZA for simple fluids. J. Mol. Liq. 112, 13 (2004). https://doi.org/10.1016/j.molliq.2003.11.004

Y. Kozitsky, M. Kozlovskii, O. Dobush. Phase transitions in a continuum Curie-Weiss system: A quantitative analysis. In: Modern Problems of Molecular Physics (Springer, 2018), pp. 229-251. https://doi.org/10.1007/978-3-319-61109-9_11

M.P. Kozlovskii, O.A. Dobush. Phase transition in a cell fluid model. Condens. Matter Phys. 20, 23501 (2017). https://doi.org/10.5488/CMP.20.23501

M.P. Kozlovskii, O.A. Dobush, I.V. Pylyuk. Using a fluid cell model for description of a phase transition in simple liquid alkali metals. Ukr. J. Phys. 62, 865 (2017). https://doi.org/10.15407/ujpe62.10.0865

I. Yukhnovskii, V. Kolomiets, I. Idzyk. Liquid-gas phase transition at and below the critical point. Condens. Matter Phys. 16, 23604 (2013). https://doi.org/10.5488/CMP.16.23604

I.R. Yukhnovskii. The phase transition of the first order in the critical region of the gas-liquid system. Condens. Matter Phys. 17, 43001 (2014). https://doi.org/10.5488/CMP.17.43001

M.P. Kozlovskii, I.V. Pylyuk, O.A. Dobush. The equation of state of a cell fluid model in the supercritical region. Condens. Matter Phys. 21, 43502 (2018). https://doi.org/10.5488/CMP.21.43502

M. Kozlovskii, O. Dobush. Representation of the grand partition function of the cell model: The state equation in the mean-field approximation. J. Mol. Liq. 215, 58 (2016). https://doi.org/10.1016/j.molliq.2015.12.018

R.C. Lincoln, K.M. Koliwad. Morse-potential evaluation of second- and third-order elastic constants of some cubic metals. Phys. Rev. 157, 463 (1967). https://doi.org/10.1103/PhysRev.157.463

J.K. Singh, J. Adhikari, S.K. Kwak. Vapor-liquid phase coexistence curves for Morse fluids. Fluid Phase Equilibria 248, 1 (2006). https://doi.org/10.1016/j.fluid.2006.07.010

I.R. Yukhnovskii, M.P. Kozlovskii, I.V. Pylyuk. Thermodynamics of three-dimensional Ising-like systems in the higher non-Gaussian approximation: Calculational method and dependence on microscopic parameters. Phys. Rev. B 66, 134410 (2002). https://doi.org/10.1103/PhysRevB.66.134410

M.V. Fedoryuk. Asymptotic methods in analysis. In: Analysis I: Integral Representations and Asymptotic Methods. Edited by M.A. Evgrafov, R.V. Gamkrelidze (Springer, 1989). https://doi.org/10.1007/978-3-642-61310-4_2

A. Parola, L. Reatto. Recent developments of the hierarchical reference theory of fluids and its relation to the renormalization group. Mol. Phys. 110, 2859 (2012). https://doi.org/10.1080/00268976.2012.666573

J.-M. Caillol. Non-perturbative renormalization group for simple fluids. Mol. Phys. 104, 1931 (2006). https://doi.org/10.1080/00268970600740774

I.R. Yukhnovskii. Phase space of collective variables and the Zubarev transition function. Theor. Math. Phys. 194, 224 (2018). https://doi.org/10.1134/S0040577918020022

A. Oleinikova, L. Bulavin, V. Pipich. Critical anomaly of shear viscosity in a mixture with an ionic impurity. Chem. Phys. Let. 278, 121 (1997). https://doi.org/10.1016/S0009-2614(97)00945-7

G. Brunner. Near critical and supercritical water. Part I. Hydrolytic and hydrothermal processes. J. Supercrit. Fluids 47, 373 (2009). https://doi.org/10.1016/j.supflu.2008.09.002

G. Brunner. Near and supercritical water. Part II: Oxidative processes. J. Supercrit. Fluids 47, 382 (2009). https://doi.org/10.1016/j.supflu.2008.09.001

Downloads

Published

2020-05-11

How to Cite

Kozlovskii, M. P., & Dobush, O. A. (2020). Phase Behavior of a Cell Fluid Model with Modified Morse Potential. Ukrainian Journal of Physics, 65(5), 428. https://doi.org/10.15407/ujpe65.5.428

Issue

Section

Physics of liquids and liquid systems, biophysics and medical physics