High-Temperature Fluorescence of Low- and High Concentration Aqueous ATP Solutions


  • Yu.G. Terentyeva Taras Shevchenko National University of Kyiv
  • Ye.Yu. Stepanenko Institute of Molecular Biology and Genetics of the NASU
  • A.M. Rashevska Institute of High Technologies of Taras Shevchenko National University of Kyiv
  • P.Yu. Koval National University of Kyiv-Mohyla Academy (NaUKMA)




high-temperature fluorescence, adenosine triphosphate, aqueous solution, excimer


The results of experimental studies of the luminescence of an aqueous solution of adenosine triphosphate (ATP) at room temperature are presented. High-temperature fluorescence of low- and high-concentrated solutions is experimentally detected. The shape of the fluorescence spectrum, the lifetime of excitations, and the temperature-based behavior of the emission intensity indicate the formation of rather stable dimer-like complexes in a high-concentration solution, which can form excimer states.


J.R. Lakowicz. Principles of Fluorescence Spectrosscopy (Springer, 2006). https://doi.org/10.1007/978-0-387-46312-4

V. Yashchuk et al. Optical response of the polynucleotides-proteins interaction. Mol. Cryst. Liq. Cryst. 535, 93 (2011). https://doi.org/10.1080/15421406.2011.537953

I. Bald et al. Two-dimensional network stability of nucleobases and amino acids on graphite under ambient conditions: adenine, L-serine and L-tyrosine. Phys. Chem. Chem. Phys. 12, 3616 (2010). https://doi.org/10.1039/b924098e

C. Su, C.T. Middleton, B. Kohler. Base-stacking disorder and excited-state dynamics in single-stranded adenine

homo-oligonucleotides. J. Phys. Chem. B 116 (34), 10266 (2012). https://doi.org/10.1021/jp305350t

A.I. Kononov, M.N. Bukina. Luminescence excitation spectra reveal low lying excited states in stacked adenine bases. J. Biomol. Struct. Dyn. 20 (3), 465 (2002). https://doi.org/10.1080/07391102.2002.10506865

M. Daniels, W. Hauswirth. Fluorescence of the purine and pyrimidine bases of the nucleic acids in neutral aqueous solution at 300 K. Science, New Series 171, 3972 (1971), 675 (2016). https://doi.org/10.1126/science.171.3972.675

F. Plasser, H. Lischka. Electronic excitation and structural relaxation of the adenine dinucleotide in gas phase and solution. Photochem. Photobiol. Sci. 12 (8), 1440 (2013). https://doi.org/10.1039/c3pp50032b

M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr. Vreven, T. Kudin, K.N. Burant et al. Gaussian 03. (Gaussian, Inc., Pittsburgh, PA, 2003).

H. C. B¨orresen. Effects of cooling on the fluorescence of biological guanine derivatives. Acta Chem. Scand. 19, 2100 (1965). https://doi.org/10.3891/acta.chem.scand.19-2100

S. Udenfriend, P. Zaltzman. Fluorescence characteristics of purines, pyrimidines, and their derivatives: Measurement of guanine in nucleic acid hydrolyzates. Anal. Biochem. 3, 49 (1962). https://doi.org/10.1016/0003-2697(62)90043-X

J.E. Gill. The fluorescence excitation spectrum of thymine: Evidence for wavelength dependence of the quantum yield. J. Mol. Spectrosc. 27, 539 (1968). https://doi.org/10.1016/0022-2852(68)90059-3

K. Berens, K.L.Wierzchowski. Luminescence of tautomeric forms of thymine monoanions. Photochem. Photobiol. 9, 433 (1969). https://doi.org/10.1111/j.1751-1097.1969.tb07310.x




How to Cite

Terentyeva, Y., Stepanenko, Y., Rashevska, A., & Koval, P. (2021). High-Temperature Fluorescence of Low- and High Concentration Aqueous ATP Solutions. Ukrainian Journal of Physics, 66(1), 79. https://doi.org/10.15407/ujpe66.1.79



Surface physics