On the Velocity of Enzymatic Reactions in Michaelis–Menten-Like Schemes (Ensemble and Single-Molecule Versions)

  • L. N. Christophorov Bogolyubov Institute for Theoretical Physics, Natl. Acad. Sci. Ukraine
Keywords: enzymatic reactions, Michaelis–Menten schemes, monomeric enzymes, conformational regulation, reaction velocity


In searching non-standard ways of conformational regulation, various Michaelis–Menten-like schemes attract relentless attention, resulting in sometimes too sophisticated considerations. With the example of monomeric enzymes possessing an only binding site, we define the minimal schemes capable of bearing peculiar regulatory properties like “cooperativity” or substrate inhibition. The simplest ways of calculating the enzymatic reaction velocity are exemplified, either in the ensemble or single-molecule case.


L. Michaelis, M.L. Menten. Die Kinetik der Invertinwirkung. Biochem. Zeitschrift 49, 333 (1913).

A Century of Michaelis-Menten Kinetics (Special issue, ed. by A. Cornish-Bowden, C.P. Whitham). FEBS Lett. 587, 2711 (2013). https://doi.org/10.1016/j.febslet.2013.07.035

A. Cornish-Bowden. One hundred years of Michaelis-Menten kinetics. Perspective in Science 4, 3 (2015). https://doi.org/10.1016/j.pisc.2014.12.002

A. Cornish-Bowden, M.L. C'ardenas. Cooperativity in monomeric enzymes. J. Theor. Biol. 124, 1 (1987). https://doi.org/10.1016/S0022-5193(87)80248-5

M.L. C'ardenas. Michaelis and Menten equation and the long road to the discovery of cooperativity. FEBS Lett. 587, 2767 (2013). https://doi.org/10.1016/j.febslet.2013.07.014

Y.P. Lu. Sizing up single-molecule enzymatic conformational dynamics. Chem. Soc. Rev. 43, 1118 (2014). https://doi.org/10.1039/C3CS60191A

R. Ye, X. Mao, X. Sun, P. Chen. Analogy between enzyme and nanoparticle catalysis: A single-molecule perspective. ACS Catal. 9, 1985 (2019). https://doi.org/10.1021/acscatal.8b04926

M. Panigrahy, A. Kumar, S. Chowdhury, A. Dua. Unraveling mechanisms from waiting time distributions in single-nanoparticle catalysis. J. Chem. Phys. 150, 204119 (2019). https://doi.org/10.1063/1.5087974

V.J. Hilser, J.A. Anderson, H.N. Motlagh. Allostery vs "allokairy", Proc. Natl. Acad. Sci. USA 112, 11430 (2015). https://doi.org/10.1073/pnas.1515239112

B.P. English, W. Min, A.M. van Oijen, K.T. Lee, G. Luo, H. Sun, B.J. Cherayil, S.C. Kou, X.S. Xie. Ever-fluctuating single enzyme molecules: Michaelis-Menten equation revisited. Nat. Chem. Biol. 2, 87 (2006). https://doi.org/10.1038/nchembio759

S.C. Kou, B.J. Cherayil, W. Min, B.P. English, X.S. Xie. Single-molecule Michaelis-Menten equations. J. Phys. Chem. B 109, 19068 (2005). https://doi.org/10.1021/jp051490q

A. Kumar, H. Maity, A. Dua. Parallel versus off-pathway Michaelis-Menten mechanism for single-enzyme kinetics of a fluctuating enzyme. J. Phys. Chem. B 119, 8490 (2015). https://doi.org/10.1021/acs.jpcb.5b03752

D. Singh, S. Chaudhury. Theoretical study of the conditional non-monotonic off rate dependence of catalytic reaction rates in single enzymes in the presence of conformational fluctuations. Chem. Phys. 523, 150 (2019). https://doi.org/10.1016/j.chemphys.2019.04.012

D.E. Piephoff, J. Wu, J. Cao. Conformational nonequilibrium kinetics: Generalized Michaelis-Menten equation. J. Phys. Chem. Lett. 8, 3619 (2017). https://doi.org/10.1021/acs.jpclett.7b01210

L.N. Christophorov. Influence of substrate unbinding on kinetics of enzymatic catalysis. Rep. Natl. Acad. Sci. Ukraine (Dopovidi) 1, 40 (2019). https://doi.org/10.15407/dopovidi2019.01.040

L.N. Christophorov, V.N. Kharkyanen. Synergetic mechanisms of structural regulation of the electron-transfer and other reactions of biological macromolecules. Chem. Phys. 319, 330 (2005). https://doi.org/10.1016/j.chemphys.2005.06.029

L.N. Christophorov. Enzyme functioning: Along the lines of non-equilibrium phase transitions. AIP Advances 8, 125326 (2018). https://doi.org/10.1063/1.5055354

B.R. Rabin. Co-operative effects in enzyme catalysis: A possible kinetic model based on substrate-induced conformational isomerization. Biochem. J. 102, 22c (1967). https://doi.org/10.1042/bj1020022C

J. Cao. Event-averaged measurements of single-molecule kinetics. Chem. Phys. Lett. 327, 38 (2000). https://doi.org/10.1016/S0009-2614(00)00809-5

W. Ferdinand. The interpretation of non-hyperbolic rate curves for two-substrate enzymes. Biochem. J. 98, 278 (1966). https://doi.org/10.1042/bj0980278

S. Reuveni, M. Urbakh, J. Klafter. Role of substrate unbinding in Michaelis-Menten enzymatic reactions. Proc. Natl. Acad. Sci. USA 111, 4391 (2014). https://doi.org/10.1073/pnas.1318122111

N. Agmon, J.J. Hopfield. CO-binding to heme proteins: A model for barrier height distribution and slow conformational changes. J. Chem. Phys. 79, 2042 (1983). https://doi.org/10.1063/1.445988

Yu.M. Barabash, N.M. Berezetskaya, L.N. Christophorov, A.O. Goushcha, V.N. Kharkyanen. Effects of structural memory in protein reactions. J. Chem. Phys. 116, 4339 (2002). https://doi.org/10.1063/1.1447906

N. Agmon, J.J. Hopfield. Transient kinetics of chemical reactions with bounded diffusion perpendicular to the reaction coordinate: Intramolecular processes with slow conformational changes. J. Chem. Phys. 78, 6947 (1983). https://doi.org/10.1063/1.444643

L.N. Christophorov. Dichotomous noise with feedback and charge-conformation interactions. J. Biol. Phys. 22, 197 (1996). https://doi.org/10.1007/BF00401873

How to Cite
Christophorov, L. (2020). On the Velocity of Enzymatic Reactions in Michaelis–Menten-Like Schemes (Ensemble and Single-Molecule Versions). Ukrainian Journal of Physics, 65(5), 412. https://doi.org/10.15407/ujpe65.5.412
Physics of liquids and liquid systems, biophysics and medical physics