A study of H2CO•••HF Complex by Advanced Quantum Mechanical Methods

  • A. Amonov Samarkand State University, Department of Physics
  • G. Murodov Samarkand State University, Department of Physics
  • K. G. Tokhadze Saint Petersburg State University, Department of Physics
  • A. Jumabaev Samarkand State University, Department of Physics
  • G. Nurmurodova Samarkand State University, Department of Physics
Keywords: stabilization geometry, hydrogen bond, harmonic and anharmonic frequencies, blue shift, complex formation energy


Our research is focused on the ab initio calculations of the equilibrium structures, binding energies, harmonic and anharmonic vibrational frequencies of a hydrogen-bonded complex, which is formed between formaldehyde H2CO and hydrogen fluoride HF, using the Gaussian 09 package of programs with full 6311++G(3df, 3pd) basis sets in the MP2 second-order perturbation theory and CCSD(T) methods. Harmonic and anharmonic vibrational frequencies and intensities of the H2CO···HF complex were calculated by the Gaussian 16 package programs within the same approximation. Geometric changes and frequency shifts at the complex formation were evaluated. The H2CO···HF complex formation energy and the dipole moment were calculated in the CCSD(T)6311++G(3df, 3pd) approximation to be equal, respectively, to 7.78 kcal/mol and 4.2 D. Changes of the geometric, spectral, and energetic parameters of the complex proved the existence of a stable hydrogen bond F–H···O=CH2 between the components.


V.P. Bulychev, K.G. Tokhadze. Vibrational spectroscopy determination of mechanisms of the v1(H-F) band shape formation in the absorption spectra of H-bonded complexes of HF from combined experimental studies and nonempirical calculations. Vibrational Spectroscopy 73, 1 (2014). https://doi.org/10.1016/j.vibspec.2014.03.009

V.P. Bulychev, A.M. Koshevarnikov, K.G. Tokhadze. The structure and vibrational spectral parameter of a complex of HF with the planer (H2CO)2 dimer. Optics and Spectroscopy 122, 851 (2017). https://doi.org/10.1134/S0030400X17060042

P. Golub, I. Doroshenko, V. Pogorelov. Quantum-chemical modeling of energy parameters and vibrational spectra of chain and cyclic clusters of monohydric alcohols. Phys. Lett. A 378, 1937 (2014). https://doi.org/10.1016/j.physleta.2014.04.032

E.N. Kozlovskaya, I. Doroshenko, V. Pogorelov, Ye. Vaskivsky, G.A.Pitsevich. Comparison of degrees of potential-energy-surface anharmonicity for complexes and clusters with hydrogen bonds. J. Appl. Spectr. 84, 929 (2018). https://doi.org/10.1007/s10812-018-0567-y

A. Nowek, J. Leszczyсski. Ab initio investigation on stability and properties of XYCO· · ·HZ complexes. II: Post Hartree-Fock studies on H2CO···HF. Struct. Chem. 6, 255 (1995). https://doi.org/10.1007/BF02293118

R.M. Minyaev, A.G. Starikov, E.A. Lepin. Pathways of the reactions of nucleophilic addition of H2O and HF molecules to formaldehyde in the gas phase and in the complex with formic acid: ab initio calculations. Russ. Chem. Bull. 47, 2078 (1998). https://doi.org/10.1007/BF02494259

R. Li, Zh. Li, D. Wu, X. Hao, R. Li, Ch. Sun. Long-range п-type hydrogen bond in the dimers CH2O-HF, CH2O-H2O, and CH2O-NH3. Int. J. Quantum Chem. 103, 299 (2005). https://doi.org/10.1002/qua.20507

F.A. Baiocchi,W. Klemperer. The rotational and hyperfine spectrum and structure of H2CO-HF2. J. Chem. Phys. 78, 3509 (1983). https://doi.org/10.1063/1.445174

F.J. Lovas, R.D. Suenram, S. Ross, M. Klobukowski. Rotational, structural, ab initio, and semirigid bender analysis of the millimeter wave spectrum of H2CO-HF. J. Mol. Spectrosc. 123, 167 (1987). https://doi.org/10.1016/0022-2852(87)90269-4

M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox. Gaussian 09 (Gaussian, 2009), Revision A.02.

S.-Jun Yoon, SooYang Park. Polymorphic and mechanochromic luminescence modulation in the highly emissive dicyanodistyrylbenzene crystal: Secondary bonding interaction in molecular stacking assembly. J. Mater. Chem. 21, 8338 (2011). https://doi.org/10.1039/c0jm03711g

Alfred Karpfen, Eugene S. Kryachko. Strongly blue-shifted C-H stretches:? Interaction of formaldehyde with hydrogen fluoride clusters. J. Phys. Chem. A 109, 8930 (2005). https://doi.org/10.1021/jp050408o

P. Hobza, V. Sypirko, H.L. Selzle, W.E. Schlag. Anti-hydrogen bond in the benzene dimer and other carbon proton donor complexes. J. Phys. Chem. A 102, 2501 (1998). https://doi.org/10.1021/jp973374w

R. Gopi, N. Ramanathan, K. Sundararajan. Blue-shift of the C-H stretching vibration in CHF3-H2O complex: Matrix isolation infrared spectroscopy and ab initio computations. J. Chem. Phys. 476, 36 (2016). https://doi.org/10.1016/j.chemphys.2016.07.016

R.E. Asfin, S.M. Melikova, K.S. Rutkowski. The infrared study of fluoroform+methyl fluoride mixtures in argon and nitrogen matrices. Evidence of nonlinear blue-shifting complex formation. Spectrochim. Acta Part A: Molec. Biomolec. Spectr. 203, 185 (2018). https://doi.org/10.1016/j.saa.2018.05.105

R. Gopi, N. Ramanathan, K. Sundararajan. Experimental evidence for blue-shifted hydrogen bonding in the fluoroform-hydrogen chloride complex: A matrix-isolation infrared and ab initio study. J. Phys. Chem. A 118, 5529 (2014). https://doi.org/10.1021/jp503718v

K. Hermansson. Blue-shifting hydrogen bonds. J. Phys. Chem. A 106, 4695 (2002). https://doi.org/10.1021/jp0143948

G.R. Desiraju, T. Steiner. The Weak Hydrogen Bond in Structural Chemistry and Biology (Oxford Univ. Press, 1999) [ISBN-13: 978-0198509707].

S. Scheiner. Hydrogen Bonding: A Theoretical Perspective (Oxford Univ. Press, 1997) [ISBN-13: 978-0195090116].

Sharon G. Lias, Joel F. Liebman, Rhoda D. Levin. Evaluated gas phase basicities and proton affinities of molecules; heats of formation of protonated molecules. J. Phys. Chem. Ref. Data. 13, 695 (1984). https://doi.org/10.1063/1.555719

E.P.L. Hunter, S.G. Lias. Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update (American Institute of Physics and American chemical Society, 1998) [ISBN: S0047-2689(98)00203-7]. https://doi.org/10.1063/1.556018

S.F. Boys, F. Bernardi. The calculations of small molecular interaction by the difference of separate total energies. Some procedures with reduced errors. Mol. Phys. 19, 553 (1970). https://doi.org/10.1080/00268977000101561

How to Cite
Amonov, A., Murodov, G., Tokhadze, K., Jumabaev, A., & Nurmurodova, G. (2020). A study of H2CO•••HF Complex by Advanced Quantum Mechanical Methods. Ukrainian Journal of Physics, 65(4), 304. https://doi.org/10.15407/ujpe65.4.304
Optics, atoms and molecules