Aggregation of Molecules in Liquid Ethylene Glycol and Its Manifestation in Experimental Raman Spectra and Non-Empirical Calculations

  • H. Hushvaktov Samarkand State University
  • A. Jumabaev Samarkand State University
  • G. Murodov Samarkand State University
  • A. Absanov Samarkand State University
  • G. Sharifov Samarkand State University
Keywords: aggregation of molecules, ethylene glycol, spectral manifestation, non-empirical calculations, hydrogen bond, intramolecular interaction, intermolecular interaction, monomer, dimer, aggregate structure

Abstract

Intra- and intermolecular interactions in liquid ethylene glycol have been studied using the Raman spectroscopy method and non-empirical calculations. The results of non-empirical calculations show that an intermolecular hydrogen bond is formed between the hydrogen atom of the OH group in one ethylene glycol molecule and the oxygen atom in the other molecule. The formation of this bond gives rise to a substantial redistribution of charges between those atoms, which, nevertheless, insignificantly changes the bond length. In the corresponding Raman spectra, the presence of hydrogen bonds between the ethylene glycol molecules manifests itself as the band asymmetry and splitting.

References

M.A. Krestyaninov, A.G. Titova, A.M. Zaichikov. Intra- and intermolecular hydrogen bonds in ethylene glycol, monoethanolamine, and ethylenediamine. Zh. Fiz. Khim. 88, 1939 (2014) (in Russian). https://doi.org/10.1134/S0036024414120164

I.Yu. Doroshenko, V.E. Pogorelov, G.A. Pitsevich, V. Shablinskas. Cluster Structure of Liquid Alcohols: Vibrational Spectroscopy Study (LAMBERT Acad. Publ., 2012) (in Russian).

V. Pogorelov, L. Bulavin, I. Doroshenko, O. Fesjun, O. Veretennikov. The structure of liquid alcohols and the temperature dependence of vibrational bandwidth. J. Mol. Struct. 708, 61 (2004). https://doi.org/10.1016/j.molstruc.2004.03.003

G.A. Pitsevich, I.Yu. Doroshenko, V.Ye. Pogorelov, E.N. Kozlovskaya, T. Borzda, V. Sablinskas, V. Balevicius. Long-wave Raman spectra of some normal alcohols. Vibr. Spectrosc. 72, 26 (2014). https://doi.org/10.1016/j.vibspec.2014.02.003

P. Golub, I. Doroshenko, V. Pogorelov. Quantum-chemical modeling of energy parameters and vibrational spectra of chain and cyclic clusters of monohydric alcohols. Phys. Lett. A 378, 1937 (2014). https://doi.org/10.1016/j.physleta.2014.04.032

A. Vasylieva, I. Doroshenko, Ye. Vaskivskyi, Ye. Chernolevska, V. Pogorelov. FTIR study of condensed water structure. J. Mol. Struct. 1167, 232 (2018). https://doi.org/10.1016/j.molstruc.2018.05.002

M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov et al. Gaussian 03, Revision A.02 (Gaussian, 2003).

V.M. Bilobrov. Hydrogen Bond: Intramolecular Interactions (Naukova Dumka, 1991) (in Russian).

Ye. Vaskivskyi, Ye. Chernolevska, A. Vasylieva, V. Pogorelov, R. Platakyte, J. Stocka, I. Doroshenko. 1-hexanol conformers in a nitrogen matrix: FTIR study and high-level ab initio calculations. J. Mol. Liq. 278, 356 (2019). https://doi.org/10.1016/j.molliq.2019.01.059

F.H. Tukhvatullin, U.N. Tashkenbaev, A. Jumabaev, H.A. Hushvaktov, A.A. Absanov, B. Hudoyberdiev. Manifestation of the intermolecular interactions in Raman spectra and ab initio calculations of molecular aggregation in liquid ethylene glycol. Ukr. J. Phys. 59, 219 (2014). https://doi.org/10.15407/ujpe59.03.0219

A. Kaiser, M. Ritter, R. Nazmutdinov, M. Probst. Hydrogen bonding and dielectric spectra of ethylene glycol-water mixtures from molecular dynamics simulations. J. Phys. Chem. B 120, 10515 (2016). https://doi.org/10.1021/acs.jpcb.6b05236

P. Kumar, S.R. Varanasi, S. Yashonath. Relation between the diffusivity, viscosity, and ionic radius of LiCl in water, methanol, and ethylene glycol: A molecular dynamics simulation. J. Phys. Chem. B 117, 8196 (2013). https://doi.org/10.1021/jp4036919

R.-Sh. Luo, J. Jonas. Raman scattering study of liquid ethylene glycol confined to nanoporous silica glasses. J. Raman Spectrosc. 32, 975 (2001). https://doi.org/10.1002/jrs.786

P. Pulay, G. Fogarasi, G. Pongar, I.E. Boggs, A.Varga. Combination of theoretical ab initio and experimental information to obtain reliable harmonic force constants. Scaled quantum mechanical (SQM) force fields for glyoxal, acrolein, butadiene, formaldehyde, and ethylene, J. Am. Chem. Soc. 105, 7037 (1983). https://doi.org/10.1021/ja00362a005

F.H. Tukhvatullin, V.Ye.Pogorelov, A. Jumabaev, H.A. Hushvaktov, A.A. Absanov, A.Usarov. Polarized components of Raman spectra of O-H vibrations in liquid water. J. Mol. Liq. 160, 88 (2011). https://doi.org/10.1016/j.molliq.2011.02.015

Published
2020-04-17
How to Cite
Hushvaktov, H., Jumabaev, A., Murodov, G., Absanov, A., & Sharifov, G. (2020). Aggregation of Molecules in Liquid Ethylene Glycol and Its Manifestation in Experimental Raman Spectra and Non-Empirical Calculations. Ukrainian Journal of Physics, 65(4), 298. https://doi.org/10.15407/ujpe65.4.298
Section
Optics, atoms and molecules

Most read articles by the same author(s)