Thermo-Optical Effects in Plasmonic Metal Nanostructures

Authors

  • O.A. Yeshchenko Taras Shevchenko National University of Kyiv, Physics Department http://orcid.org/0000-0001-8927-5673
  • A.O. Pinchuk Department of Physics and Energy Sciences, University of Colorado at Colorado Springs

DOI:

https://doi.org/10.15407/ujpe66.2.112

Keywords:

metal nanoparticles, surface plasmon resonance, temperature effects, electron-phonon scattering, nanoparticle thermal expansion, plasmon enhanced photoluminescence, light-induced heating

Abstract

The effects of the temperature on the surface plasmon resonance (SPR) in noble metal nanoparticles at various temperatures ranging from 77 to 1190 K are reviewed. A temperature increase results in an appreciable red shift and leads to a broadening of the SPR in the nanoparticles (NPs). This observed thermal expansion along with an increase in the electron-phonon scattering rate with rising temperature emerge as the dominant physical mechanisms producing the red shift and broadening of the SPR. Strong temperature dependence of surface plasmon enhanced photoluminescence from silver (Ag) and copper (Cu) NPs is observed. The quantum photoluminescence yield of Ag nanoparticles decreases as the temperature increases, due to a decrease in the plasmon enhancement resulting from an increase in the electron-phonon scattering rate. An anomalous temperature dependence of the photoluminescence from Cu nanoparticles was also observed; the quantum yield of photoluminescence increases with the temperature. The interplay between the SPR and the interband transitions plays a critical role in this effect. The surface-plasmon involved laser heating of a dense 2D layer of gold (Au) NPs and of Au NPs in water colloids is also examined. A strong increase in the Au NP temperature occurs, when the laser frequency approaches the SPR. This finding supports the resonant plasmonic character of the laser heating of metal NPs. The sharp blue shift of the surface plasmon resonance in colloidal Au NPs at temperatures exceeding the water boiling point indicates the vapor-bubble formation near the surface of the NPs.

Author Biographies

O.A. Yeshchenko, Taras Shevchenko National University of Kyiv, Physics Department

Physics Department

A.O. Pinchuk, Department of Physics and Energy Sciences, University of Colorado at Colorado Springs

Department of Physics and Energy Sciences

References

A. Barhoumi, D. Zhang, F. Tam, N. Halas. Surface-enhanced Raman spectroscopy of DNA. J. Am. Chem. Soc. 130, 5523 (2008).

https://doi.org/10.1021/ja800023j

F. Le, D. Brandl, Y. Urzhumov, H. Wang, J. Kundu, N. Halas, J. Aizpurua, P. Nordlander. Metallic NP arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption. ACS Nano 2, 707 (2008).

https://doi.org/10.1021/nn800047e

G. Laurent, N. Felidj, J. Grand, J. Aubard, G. Levi, A. Hohenau, J. Krenn, F. Aussenegg. Probing surface plasmon fields by far-field Raman imaging. J. Microscopy 229, 189 (2008).

https://doi.org/10.1111/j.1365-2818.2008.01885.x

R. Bakker, H. Yuan, Z. Liu, V. Drachev, A. Kildishev, V. Shalaev, R. Pedersen, S. Gresillon, A. Boltasseva. Enhanced localized fluorescence in plasmonic nanoantennae. Appl. Phys. Lett. 92, 043101 (2008).

https://doi.org/10.1063/1.2836271

G. Gay, B. de Lesegno, R. Mathevet, J. Weiner, H. Lezec, T. Ebbesen. Atomic fluorescence mapping of optical field

intensity profiles issuing from nanostructured slits, milled into subwavelength metallic layers. Appl. Phys. B 81, 871 (2005).

https://doi.org/10.1007/s00340-005-2016-x

O.A. Yeshchenko, I.M. Dmitruk, A.A. Alexeenko, M.Yu. Losytskyy, A.V. Kotko, A.O. Pinchuk. Size-dependent surface-plasmon-enhanced photoluminescence from silver nanoparticles embedded in silica. Phys. Rev. B 79, 235438 (2009).

https://doi.org/10.1103/PhysRevB.79.235438

A. Gobin, M. Lee, R. Drezek, N. Halas, J. West. Vascular targeting of nanoshells for photothermal cancer therapy. Clin. Cancer Res. 12, B83 (2014).

C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer. Near-field photochemical imaging of noble metal nanostructures. Nano Lett. 5, 615 (2005).

https://doi.org/10.1021/nl047956i

K. Kandere-Grzybowska, C. Campbell, Y. Komarova, B. Grzybowski, G. Borisy. Molecular dynamics imaging in micropatterned living cells. Nature Methods 2, 739 (2005).

https://doi.org/10.1038/nmeth796

M. Choi, K.J. Stanton-Maxey, J.K. Stanley, C.S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J.P. Robinson, R. Bashir, N.J. Halas, S.E. Clare. A cellular trojan horse for delivery of therapeutic nanoparticles into tumors. Nano Lett. 7, 3759 (2007).

https://doi.org/10.1021/nl072209h

L. Hirsch, A. Gobin, A. Lowery, F. Tam, R. Drezek, N. Halas, J.West. Metal nanoshells. Ann. Biomed. Engin. 34, 15 (2006).

https://doi.org/10.1007/s10439-005-9001-8

D. O'Neal, L. Hirsch, N. Halas, J. Payne, J. West. Photothermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett. 209, 171 (2004).

https://doi.org/10.1016/j.canlet.2004.02.004

D. Citrin. Plasmon polaritons in finite-length metal-nanoparticle chains: the role of chain length unravelled. Nano Lett. 5, 985 (2005).

https://doi.org/10.1021/nl050513+

J. Jung, T. Sondergaard, S. Bozhevolnyi. Theoretical analysis of square surface plasmon-polariton waveguides for long-range polarization-independent waveguiding. Phys. Rev. B 76, 035434 (2007).

https://doi.org/10.1103/PhysRevB.76.035434

K. Leosson, T. Nikolajsen, A. Boltasseva, S. Bozhevolnyi. Long-range surface plasmon polariton nanowire waveguides for device applications. Opt. Express 14, 314 (2006).

https://doi.org/10.1364/OPEX.14.000314

B. Steinberger, A. Hohenau, H. Ditlbacher, A. Stepanov, A. Drezet, F. Aussenegg, A. Leitner, J. Krenn. Dielectric stripes on gold as surface plasmon waveguides. App. Phys. Lett. 88, 094104 (2006).

https://doi.org/10.1063/1.2180448

J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, T. Kobayashi. Guiding of a one-dimensional optical beam with nanometer diameter. Opt. Lett. 22, 475 (1997).

https://doi.org/10.1364/OL.22.000475

U. Kreibig, M. Vollmer. Optical Properties of Metal Clusters (Springer, 1995) [ISBN: 978-3-662-09109-8].

https://doi.org/10.1007/978-3-662-09109-8

C.F. Bohren, D.R. Huffman. Absorption and Scattering of Light by Small Particle (Wiley, 1998) [ISBN: 9783527618156].

https://doi.org/10.1002/9783527618156

B.G. Ershov, E. Janata, A. Henglein, A. Fojtik. Silver atoms and clusters in aqueous solution: Absorption spectra and the particle growth in the absence of stabilizing Ag+ ions. J. Phys. Chem. 97, 4589 (1993).

https://doi.org/10.1021/j100120a006

A. Henglein. Physicochemical properties of small metal particles in solution: "microelectrode" reactions, chemisorption, composite metal particles, and the atom-to-metal transition. J. Phys. Chem. 97, 5457 (1993).

https://doi.org/10.1021/j100123a004

U. Kreibig. Interface-induced dephasing of Mie plasmon polaritons. Appl. Phys. B 93, 79 (2008).

https://doi.org/10.1007/s00340-008-3213-1

W.A. Challener, C. Peng, A.V. Itagi, D. Karns, W. Peng, Y. Peng, X.M. Yang, X. Zhu, N.J. Gokemeijer, Y.-T. Hsia, G. Ju, R.E. Rottmayer, M.A. Seigler, E.C. Gage. Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer. Nature Photon. 3, 220 (2009).

https://doi.org/10.1038/nphoton.2009.26

L.R. Hirsch, R.J. Stafford, J.A. Bankson, S.R. Sershen, B. Rivera, R.E. Price, J.D. Hazle, N.J. Halas, J.L. West. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. USA 100, 13549 (2003).

https://doi.org/10.1073/pnas.2232479100

A. Lowery, A. Gobin, E. Day, N. Halas, J. West. Immunonanoshell laser-assisted therapy targets and ablates tumor cells. Breast Cancer Res. Treat. 100, S289 (2006).

A. Lowery, A. Gobin, E. Day, N. Halas, J. West. Immuno nanoshells for targeted photothermal ablation of tumor cells. Int. J. Nanomed. 1, 149 (2006).

https://doi.org/10.2147/nano.2006.1.2.149

L. Cao, D.N. Barsic, A.R. Guichard, M.L. Brongersma. Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes. Nano Lett. 7, 3523 (2007).

https://doi.org/10.1021/nl0722370

W. Cai, J.S. White, M.L. Brongersma. Compact, hight-speed and power-efficient electrooptic plasmonic modulators. Nano Lett. 9, 4403 (2009).

https://doi.org/10.1021/nl902701b

U. Kreibig. Electronic properties of small silver particles: the optical constants and their temperature dependence. J. Phys. F 4, 999 (1974).

https://doi.org/10.1088/0305-4608/4/7/007

R.H. Doremus. Optical properties of small gold particles. J. Chem. Phys. 40, 2389 (1964).

https://doi.org/10.1063/1.1725519

R.H. Doremus. Optical properties of small silver particles. J. Chem. Phys. 42, 414 (1965).

https://doi.org/10.1063/1.1695709

P. Mulvaney. Nanoscale Materials in Chemistry. Edited by K.J. Klabunde (Wiley, 2001), P. 121.

J.-S.G.Bouillard,W.Dickson,D.P.O'Connor,G.A.Wurtz, A.V. Zayats. Low-temperature plasmonics of metallic nanostructures. Nano Lett. 12, 1561 (2012).

https://doi.org/10.1021/nl204420s

D.Yu. Fedyanin, A.V. Krasavin, A.V. Arsenin, A.V. Zayats. Surface plasmon polariton amplification upon electrical injection in highly integrated plasmonic circuits. Nano Lett. 12, 2459 (2012).

https://doi.org/10.1021/nl300540x

S. Link, M.A. El-Sayed. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B 103, 4212 (1999).

https://doi.org/10.1021/jp984796o

O.A. Yeshchenko, I.M. Dmitruk, A.A. Alexeenko, A.V. Kotko, J. Verdal, A.O. Pinchuk. Size and temperature effects on the surface plasmon resonance in silver nanoparticles. Plasmonics 7, 685 (2012).

https://doi.org/10.1007/s11468-012-9359-z

O.A.Yeshchenko, I.S.Bondarchuk,V.S.Gurin, I.M.Dmitruk, A.V. Kotko. Temperature dependence of the surface

plasmon resonance in gold nanoparticles. Surf. Sci. 608, 275 (2013).

https://doi.org/10.1016/j.susc.2012.10.019

O.A. Yeshchenko, I.S. Bondarchuk, A.A. Alexeenko, A.V. Kotko. Temperature dependence of the surface plasmon resonance in silver nanoparticles. Functional Materials 20, 357 (2013).

https://doi.org/10.15407/fm20.03.357

O.A. Yeshchenko. Temperature effects on the surface plasmon resonance in copper nanoparticles. Ukr. J. Phys. 58, 249 (2013).

https://doi.org/10.15407/ujpe58.03.0249

O.A. Yeshchenko, I.M. Dmitruk, A.M. Dmytruk, A.A. Alexeenko. Influence of annealing conditions on size and optical properties of copper nanoparticles embedded in silica matrix. Mater. Sci. Eng. B 137, 247 (2007).

https://doi.org/10.1016/j.mseb.2006.11.030

O.A. Yeshchenko, I.M. Dmitruk, A.A. Alexeenko, A.M. Dmytruk. Size-dependent melting of spherical copper nanoparticles embedded in a silica matrix. Phys. Rev. B 75, 085434 (2007).

https://doi.org/10.1103/PhysRevB.75.085434

V.S. Gurin, A.A. Alexeenko, K.V. Yumashev, P.V. Prokoshin, S.A. Zolotovskaya, G.A. Zhavnerko. Structure and

optical properties of CuxO- and CuxSe-doped sol-gel silica glasses. Mater. Sci. Eng. C 23, 1063 (2003).

https://doi.org/10.1016/j.msec.2003.09.073

U. Kreibig, L. Genzel. Optical absorption of small metallic particles. Surf. Sci. 156, 678 (1985).

https://doi.org/10.1016/0039-6028(85)90239-0

S. Link, M. El-Sayed. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B 103, 4212 (1999).

https://doi.org/10.1021/jp984796o

N.I. Grigorchuk, P.M. Tomchuk. Optical and transport properties of spheroidal metal nanoparticles with account for the surface effect. Phys. Rev. B 84, 085448 (2011).

https://doi.org/10.1103/PhysRevB.84.085448

K. Ujihara. Reflectivity of metals at high temperatures. J Appl. Phys. 43, 2376 (1972).

https://doi.org/10.1063/1.1661506

R.H. Bube. Electrons in Solids: An Introductory Survey (Academic Press, 1992) [ISBN: 9780080505381].

Z. Li-Jun, G. Jian-Gang, Z. Ya-Pu. Size- and temperature-dependent thermal expansion coefficient of a nanofilm. Chin. Phys. Lett. 26, 066201 (2009).

https://doi.org/10.1088/0256-307X/26/6/066201

J.H. Wray, J.T. Neu. Refractive index of several glasses as a function of wavelength and temperature. J. Opt. Soc. Am. 59, 774 (1969).

https://doi.org/10.1364/JOSA.59.000774

P.B. Johnson, R.W. Christy. Optical constants of noble metals. Phys. Rev. B 6, 4370 (1972).

https://doi.org/10.1103/PhysRevB.6.4370

N.W. Ashcroft, N.D. Mermin. Solid State Physics (Saunders College, 1976) [ISBN: 0030839939].

R.C. Lincoln, K.M. Koliwad, P.B. Ghate. Morse-potential evalution of second- and third-order elastic constants of some cubic metals. Phys. Rev. 157, 463 (1967).

https://doi.org/10.1103/PhysRev.157.463

O.A. Yeshchenko, I.M. Dmitruk, K.P. Grytsenko, V.M. Prokopets, A.V. Kotko, S. Schrader. Influence of interparticle interaction on melting of gold nanoparticles in Au/polytetrafluoroethylene nanocomposites. J. Appl. Phys. 105, 094326 (2009).

https://doi.org/10.1063/1.3125274

O.A. Yeshchenko, I.M. Dmitruk, A.A. Alexeenko, A.V. Kotko. Surface plasmon as a probe for melting of silver nanoparticles. Nanotechnology 21, 045203 (2010).

https://doi.org/10.1088/0957-4484/21/4/045203

M. Schwind, V.P. Zhdanov, I. Zoriс, B. Kasemo. LSPR study of the kinetics of the liquid-solid phase transition in Sn nanoparticles. Nano Lett. 10, 931 (2010).

https://doi.org/10.1021/nl100044k

C. Kittel. Introduction to Solid State Physics (Willey, 2005) [ISBN: 978-0-471-41526-8].

A. Mooradian. Photoluminescence of metals. Phys. Rev. Lett. 22, 185 (1969).

https://doi.org/10.1103/PhysRevLett.22.185

S.W. Chen, R.S. Ingram, M.J. Hostetler, J.J. Pietron, R.W. Murray, T.G. Schaaff, J.T. Khoury, M.M. Alvarez, R.L. Whetten. Gold nanoelectrodes of varied size: transition to molecule-like charging. Science 280, 2098 (1998).

https://doi.org/10.1126/science.280.5372.2098

R.S. Ingram, M.J. Hostetler, R.W. Murray, T.G. Schaaff, J.T. Khoury, R.L. Whetten, T.P. Bigioni, D.K. Guthrie, P.N. First. 28 kDa alkanethiolate-protected Au clusters give analogous solution electrochemistry and STM coulomb staircases. J. Am. Chem. Soc. 119, 9279 (1997).

https://doi.org/10.1021/ja972319y

P. Apell, R. Monreal, S. Lundqvist. Photoluminescence of noble metals. Phys. Scr. 38, 174 (1988).

https://doi.org/10.1088/0031-8949/38/2/012

W. Knoll, M.R. Philpott, J.D. Swalen, A. Girlando. Emission of light from Ag metal gratings coated with dye monolayer assemblies. J. Chem. Phys. 75, 4795 (1981).

https://doi.org/10.1063/1.441915

O.A. Yeshchenko, I.M. Dmitruk, A.A. Alexeenko, M.Yu. Losytskyy, A.V. Kotko, A.O. Pinchuk. Size-dependent surface-plasmon-enhanced photoluminescence from silver nanoparticles embedded in silica. Phys. Rev. B 79, 235438 (2009).

https://doi.org/10.1103/PhysRevB.79.235438

A.P. Zhang, J.Z. Zhang, Y. Fang. Photoluminescence from colloidal silver nanoparticles. J. Lumin. 128, 1635 (2008).

https://doi.org/10.1016/j.jlumin.2008.03.014

O. Veron, J.P. Blondeau, N. Abdelkrim, E. Ntsoenzok. Luminescence study of silver nanoparticles obtained by annealed ionic exchange silicate glasses. Plasmonics 5, 213 (2010).

https://doi.org/10.1007/s11468-010-9136-9

O.A. Yeshchenko, I.S. Bondarchuk, M.Yu. Losytskyy, A.A. Alexeenko. Temperature dependence of photoluminescence from silver nanoparticles. Plasmonics 9, 93 (2014).

https://doi.org/10.1007/s11468-013-9601-3

J.P. Wilcoxon, J.E. Martin, F. Parsapour, B. Wiedenman, D.F. Kelley. Photoluminescence from nanosize gold clusters. J. Chem. Phys. 108, 9137 (1998).

https://doi.org/10.1063/1.476360

M.B. Mohamed, V. Volkov, S. Link, M.A. El-Sayed. The "lightning" gold nanorods: Fluorescence enhancement of

over a million compared to the gold metal. Chem. Phys. Lett. 317, 517 (2000).

https://doi.org/10.1016/S0009-2614(99)01414-1

O.A. Yeshchenko, I.S. Bondarchuk, M.Yu. Losytskyy. Surface plasmon enhanced photoluminescence from copper nanoparticles: influence of temperature. J. Appl. Phys. 116, 054309 (2014).

https://doi.org/10.1063/1.4892432

Q. Darugar, W. Qian, M.A. El-Sayed, M.P. Pileni. Size-dependent ultrafast electronic energy relaxation and enhanced fluorescence of copper nanoparticles. J. Phys. Chem. B 110, 143 (2006).

https://doi.org/10.1021/jp0545445

G.T. Boyd, Z.H. Yu, Y.R. Shen. Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces. Phys. Rev. B 33, 7923 (1986).

https://doi.org/10.1103/PhysRevB.33.7923

F. Hubenthal. Increased damping of plasmon resonances in gold nanoparticles due to broadening of the band structure. Plasmonics 8, 1341 (2013).

https://doi.org/10.1007/s11468-013-9536-8

D.J. Whittle, E. Burstein. Raman-scattering by resonant molecules at smooth metal-surfaces. Bull. Am. Phys. Soc. 26, 777 (1981).

F.T. Xie, H.Y. Bie, L.M. Duan, G.H. Li, X. Zhang, J.Q. Xu. Self-assembly of silver polymers based on flexible isonicotinate ligand at different pH values: syntheses, structures and photoluminescent properties. J. Solid State Chem. 178, 2858 (2005).

https://doi.org/10.1016/j.jssc.2005.06.025

O.A. Yeshchenko, S.V. Kondratenko, V.V. Kozachenko. Surface plasmon enhanced photoluminescence from fullerene C60 film on Au nanoparticles array: resonant dependence on excitation frequency. J. Appl. Phys. 111, 124327 (2012).

https://doi.org/10.1063/1.4731228

A.V. Akimov, A. Mukherjee, C.L. Yu, D.E. Chang, A.S. Zibrov, P.R. Hemmer, H. Park, M.D. Lukin. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 450, 402 (2007).

https://doi.org/10.1038/nature06230

S. Garg, B. Singh, X. Liu, A. Jain, N. Ravishankar, L. Interrante, G. Ramanath. Metal-dielectric interface tough-ening by catalyzed ring opening in a monolayer. J. Phys. Chem. Lett. 1, 336 (2010).

https://doi.org/10.1021/jz9001357

S. Garg, A. Jain, C. Karthik, B. Singh, R. Teki, V.S. Smentkowski, M.W. Lane, G. Ramanath. Metal-dielectric interface toughening by molecular nanolayer decomposition. J. Appl. Phys. 108, 034317 (2010).

https://doi.org/10.1063/1.3437648

D.A. Zatsepin, V.S. Kortov, E.Z. Kurmaev, N.V. Gavrilov, R.G. Wilks, A. Moewes. X-ray emission and photoluminescence spectroscopy of nanostructured silica with implanted copper ions. Phys. Solid State 50, 2322 (2008).

https://doi.org/10.1134/S1063783408120172

D. Dalacu, M. Martinu. Optical properties of discontinuous gold films: finite-size effects. J. Opt. Soc. Am. B 18, 85 (2001).

https://doi.org/10.1364/JOSAB.18.000085

O.A. Yeshchenko, I.S. Bondarchuk, V.V. Kozachenko, M.Yu. Losytskyy. Photoluminescence of rhodamine 6G in

plasmonic field of Au nanoparticles: temperature effects. J. Lumin. 158, 294 (2015).

https://doi.org/10.1016/j.jlumin.2014.10.018

O.A. Yeshchenko, I.S. Bondarchuk, V.V. Kozachenko, M.Yu. Losytskyy. Sensing the temperature influence on

plasmonic field of metal nanoparticles by photoluminescence of fullerene C60 in layered C60/Au system. J. Appl. Phys. 117, 153102 (2015).

https://doi.org/10.1063/1.4918554

A.O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, N.A. Kotov. Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances. Nanoscale Res. Lett. 1, 84 (2006).

https://doi.org/10.1007/s11671-006-9015-7

A.O. Govorov, H.H. Richardson. Generating heat with metal nanoparticles. Nano Today 2, 30 (2007).

https://doi.org/10.1016/S1748-0132(07)70017-8

Z. Fang, Y.R. Zhen, O. Neumann, A. Polman, F.J. Garcia de Abajo, P. Nordlander, N.J. Halas. Evolution of light-

induced vapor generation at a liquid-immersed metallic nanoparticle. Nano Lett. 13, 1736 (2013).

https://doi.org/10.1021/nl4003238

B. Choudhuri, A. Mondal, J.C. Dhar, N.K. Singh, T. Goswami, K.K. Chattopadhyay. Enhanced photocurrent from generated photothermal heat in indium nanoparticles embedded TiO2 film. Appl. Phys. Lett. 102, 233108 (2013).

https://doi.org/10.1063/1.4811360

H.A. Atwater, A. Polman. Plasmonics for improved photovoltaic devices. Nature Mater. 9, 205 (2010).

https://doi.org/10.1038/nmat2629

D. Erickson, D. Sinton, D. Psaltis. Optofluidics for energy applications. Nature Photonics 5, 583 (2011).

https://doi.org/10.1038/nphoton.2011.209

J.A. Schuller, T. Taubner, M.L. Brongersma. Optical antenna thermal emitters. Nature Photonics 3, 658 (2009).

https://doi.org/10.1038/nphoton.2009.188

J.R. Adleman, D.A. Boyd, D.G. Goodwin, D. Psaltis. Heterogenous catalysis mediated by plasmon heating. Nano Lett. 9, 4417 (2009).

https://doi.org/10.1021/nl902711n

P. Christopher, H.L. Xin, S. Linic. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nature Chem. 3, 467 (2011).

https://doi.org/10.1038/nchem.1032

S. Ibrahimkutty, J. Kim, M. Cammarata, F. Ewald, J. Choi, H. Ihee, A. Plech. Ultrafast structural dynamics of the photocleavage of protein hybrid nanoparticles. ACS Nano 5, 3788 (2011).

https://doi.org/10.1021/nn200120e

J. Lee, A.O. Govorov, N.A. Kotov. Nanoparticle assemblies with molecular springs: a nanoscale thermometer. Angew. Chem. Int. Ed. 44, 7439 (2005).

https://doi.org/10.1002/anie.200501264

Z.Z.J. Lim, J.E.J. Li, C.T. Ng, L.Y.L. Yung, B.H. Bay. Gold nanoparticles in cancer therapy. Acta Pharmacol. Sin. 32, 983 (2011).

https://doi.org/10.1038/aps.2011.82

G. von Maltzahn, J.-H. Park, K.Y. Lin, N. Singh, C. Schwoppe, R. Mesters, W.E. Berdel, E. Ruoslahti, M.J. Sailor, S.N. Bhatia. Nanoparticles that communicate in vivo to amplify tumour targeting. Nature Mater. 10, 545 (2011).

https://doi.org/10.1038/nmat3049

J.R. Adleman, D.A. Boyd, D.G. Goodwin, D. Psaltis. Heterogenous catalysis mediated by plasmon heating. Nano Lett. 9, 4417 (2009).

https://doi.org/10.1021/nl902711n

D.A. Boyd, L. Greengard, L. Brongersma, M.Y. El-Naggar, D.G. Goodwin. Plasmon-assisted chemical vapor deposition. Nano Lett. 6, 2592 (2006).

https://doi.org/10.1021/nl062061m

C. Li, Z.Wang, P.I.Wang, Y. Peles, N. Koratkar, G.P. Peterson. Nanostructured copper interfaces for enhanced boiling. Small 4, 1084 (2008).

https://doi.org/10.1002/smll.200700991

H.H. Richardson, M.T. Carlson, P.J. Tandler, P. Hernandez, A.O. Govorov. Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions. Nano Lett. 9, 1139 (2009).

https://doi.org/10.1021/nl8036905

M.T. Carlson, A.J. Green, H.H. Richardson. Superheating water by CW excitation of gold nanodots. Nano Lett. 12, 1534 (2012).

https://doi.org/10.1021/nl2043503

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R.A. Drezek, J.H. Hafner, D.O. Lapotko. Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles. ACS Nano 4, 2109 (2010).

https://doi.org/10.1021/nn1000222

O.A. Yeshchenko, V.V. Kozachenko. Light-induced heating of dense 2D ensemble of gold nanoparticles: dependence on detuning from surface plasmon resonance. J. Nanopart. Res. 17, 296 (2015).

https://doi.org/10.1007/s11051-015-3101-7

O.A. Yeshchenko, N.V. Kutsevol, A.P. Naumenko. Light-induced heating of gold nanoparticles in colloidal solution: dependence on detuning from surface plasmon resonance. Plasmonics 11, 345 (2016).

https://doi.org/10.1007/s11468-015-0034-z

N. Kutsevol, T. Bezugla, M. Bezuglyi, M. Rawiso. Starlike dextran-graft-(polyacrylamide-copolyacrylic acid) copolymers. Macromol Symp. 82, 317 (2012).

https://doi.org/10.1002/masy.201100087

V. Chumachenko, N. Kutsevol, M. Rawiso, M. Schmutz, C. Blanck. In situ formation of silver nanoparticles in linear and branched polyelectrolyte matrices using various reducing agents. Nanoscale Res. Lett. 9, 164 (2014).

https://doi.org/10.1186/1556-276X-9-164

Y.-J. Chen, M.-C. Lee, C.-M. Wang. Dielectric function dependence on temperature for Au and Ag. Japan J. Appl. Phys. 53, 08MG02 (2014).

https://doi.org/10.7567/JJAP.53.08MG02

I. Thormahlen, J. Straub, U. Grigull. Refractive index of water and its dependence on wavelength, temperature, and density. J. Phys. Chem. Refer. Data 14, 933 (1985).

https://doi.org/10.1063/1.555743

Downloads

Published

2021-03-04

How to Cite

Yeshchenko, O., & Pinchuk, A. (2021). Thermo-Optical Effects in Plasmonic Metal Nanostructures. Ukrainian Journal of Physics, 66(2), 112. https://doi.org/10.15407/ujpe66.2.112

Issue

Section

Optics, atoms and molecules

Most read articles by the same author(s)