Finite-Temperature Bose-Einstein Condensation in Interacting Boson System

  • D. Anchishkin Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine, Taras Shevchenko National University of Kyiv, Frankfurt Institute for Advanced Studies
  • I. Mishustin Frankfurt Institute for Advanced Studies, National Research Center “Kurchatov Institute”
  • O. Stashko Taras Shevchenko National University of Kyiv
  • D. Zhuravel Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • H. Stoecker Frankfurt Institute for Advanced Studies, Goethe University Frankfurt
Keywords: pion gas, phase transition, condensate

Abstract

Thermodynamical properties of an interacting boson system at finite temperatures and zero chemical potential are studied within the framework of the Skyrme-like mean-field toy model. It is assumed that the mean field contains both attractive and repulsive terms. Self-consistency relations between the mean field and thermodynamic functions are derived. It is shown that, for sufficiently strong attractive interactions, this system develops a first-order phase transition via the formation of a Bose condensate. An interesting prediction of the model is that the condensed phase is characterized by a constant total density of particles. It is shown that the energy density exhibits a jump at the critical temperature.

References

A.B. Migdal. Stability of vacuum and limiting fields. Sov. Phys. JETP 34 (6), 1184 (1972). https://doi.org/10.1070/PU1972v014n06ABEH004836

A.B. Migdal, O.A. Markin, I.N. Mishustin. The pion spectrum in nuclear matter and pion condensation. Sov. Phys. JETP 39 (2), 212 (1974).

A.B.Migdal. Pion fields in nuclear matter. Rev. Mod. Phys. 50, 107 (1978). https://doi.org/10.1103/RevModPhys.50.107

A.B. Migdal, E. Saperstein, M. Troitsky, D. Voskresensky. Pion degrees of freedom in nuclear matter. Phys. Rept. 192, 179 (1990). https://doi.org/10.1016/0370-1573(90)90132-L

A. Anselm, M. Ryskin. Production of classical pion field in heavy ion high energy collisions. Phys. Lett B 226, 482 (1991). https://doi.org/10.1016/0370-2693(91)91073-5

J.-P. Blaizot, A. Krzywicki. Soft-pion emission in high-energy heavy-ion collisions. Phys. Rev. D 46, 246 (1992). https://doi.org/10.1103/PhysRevD.46.246

J.D. Bjorken. A full-acceptance detector for SSC physics at low and intermediate mass scales: an expression of interest to the SSC. Intern. J. Mod. Phys. A 7, 4189 (1992). https://doi.org/10.1142/S0217751X92001885

I.N. Mishustin, W. Greiner. Multipion droplets. J. Phys. G: Nucl. Part. Phys. 19, L101 (1993). https://doi.org/10.1088/0954-3899/19/7/001

D.T. Son, M.A. Stephanov. QCD at finite isospin density. Phys. Rev. Lett. 86, 592 (2001). https://doi.org/10.1103/PhysRevLett.86.592

J. Kogut, D. Toublan. QCD at small non-zero quark chemical potentials. Phys. Rev. D 64, 034007 (2001); [arXiv:hep-ph/0103271]. https://doi.org/10.1103/PhysRevD.64.034007

D. Toublan, J. Kogut. Isospin chemical potential and the QCD phase diagram at nonzero temperature and baryon chemical potential. Phys. Lett. B 564, 212 (2001); [arXiv:hep-ph/0301183]. https://doi.org/10.1016/S0370-2693(03)00701-9

A. Mammarella, M. Mammarelli. Intriguing aspects of meson condensation. Phys. Rev. D 92, 085025 (2015); [1507.02934 [hep-ph]], 2015. https://doi.org/10.1103/PhysRevD.92.085025

S. Carignano, L. Lepori, A. Mammarella, M. Mannarelli, G. Pagliaroli. Scrutinizing the pion condensed phase. Eur. Phys. J. A 53, 35 (2017); [arXiv:1610.06097 [hep-ph]]. https://doi.org/10.1140/epja/i2017-12221-x

B.B. Brandt, G. Endrodi. QCD phase diagram with isospin chemical potential. PoS LATTICE2016 039 (2016); [arXiv:1611.06758 [hep-lat]]. https://doi.org/10.22323/1.256.0039

B.B. Brandt, G. Endrodi, S. Schmalzbauer. QCD at finite isospin chemical potential. arXiv:1709.10487 [hep-lat].

L.M. Satarov, M.N. Dmitriev, I.N. Mishustin. Equation of state of hadron resonance gas and the phase diagram of strongly interacting matter. Phys. Atom. Nucl. 72, 1390 (2009). https://doi.org/10.1134/S1063778809080146

Volodymyr Vovchenko, Anton Motornenko, Paolo Alba, Mark I. Gorenstein, Leonid M. Satarov, Horst Stoecker. Multicomponent van der Waals equation of state: Applications in nuclear and hadronic physics. Phys. Rev. C 96, 045202 (2017). https://doi.org/10.1103/PhysRevC.96.045202

D. Anchishkin, V. Vovchenko. Mean-field approach in the multi-component gas of interacting particles applied to relativistic heavy-ion collisions. J. Phys. G: Nucl. Part. Phys. 42, 105102: 1-27 (2015); arXiv:1411.1444 [nucl-th]. https://doi.org/10.1088/0954-3899/42/10/105102

D.V. Anchishkin. Particle finite-size effects as a mean-field approximation. Sov. Phys. JETP 75, 195 (1992).

D. Anchishkin, E. Suhonen. Generalization of mean-field models to account for effects of excluded-volume. Nucl. Phys. A 586, 734 (1995). https://doi.org/10.1016/0375-9474(94)00822-5

R.V. Poberezhnyuk, V. Yu. Vovchenko, D.V. Anchishkin, M.I. Gorenstein. Limiting temperature of pion gas with the van der Waals equation of state. J. Phys. G: Nucl. Part. Phys. 43, 095105 (2016); arXiv:1508.04585 [nucl-th]. https://doi.org/10.1088/0954-3899/43/9/095105

D. Anchishkin, I. Mishustin. H. Stoecker. Phase transition in interacting boson system at finite temperatures. J. Phys. G 46, 035002 (2019); arXiv:1806.10857 [nucl-th]. https://doi.org/10.1088/1361-6471/aafea8

J.P. Hansen, I.R. McDonald. Virial expansion of the equation of state. In Theory of Simple Liquids (Academic Press, 2006), p. 75, Eq. (3.9.14).

A.J. Leggett. Quantum Liquids (Oxford University Press Inc., 2006). https://doi.org/10.1093/acprof:oso/9780198526438.001.0001

E.V. Shuryak. Collective interaction of mesons in hot hadronic matter. Nucl. Phys. A 533, 761 (1991). https://doi.org/10.1016/0375-9474(91)90543-F

J. Theis, G. Graebner, G. Buchwald, J. Maruhn, W. Greiner, H. Stoecker, J. Polonyi. Phase transition of the nucleon-antinucleon plasma in a relativistic mean-field theory. Phys. Rev. D 28, 2286 (1983). https://doi.org/10.1103/PhysRevD.28.2286

Published
2019-12-09
How to Cite
Anchishkin, D., Mishustin, I., Stashko, O., Zhuravel, D., & Stoecker, H. (2019). Finite-Temperature Bose-Einstein Condensation in Interacting Boson System. Ukrainian Journal of Physics, 64(12), 1118. https://doi.org/10.15407/ujpe64.12.1118
Section
Fields and elementary particles