Mathematical Modeling of Neutron Induced Fission of 237Np Nucleus


  • C. Oprea Frank Laboratory for Neutron Physics (FLNP) Joint Institute for Nuclear Researches (JINR), Romanian National Agency for Scientific Research
  • M.A. Ahmad Physics Department, Faculty of Science
  • J.H. Baker Physics Department, Faculty of Science
  • A.I. Oprea Frank Laboratory for Neutron Physics (FLNP) Joint Institute for Nuclear Researches (JINR)



neutron fission, cross sections, yields, reaction mechanism, production of isotopes


Recent progress of applied and fundamental researches in nuclear physics necessitates new neutron sources with highly improved intensity. For a few years at JINR (Dubna) the development of new neutron facilities that will replace the IBR-2 neutron pulsed research reactor, which will finish its activities in 2032, is carried on. Some projects use the fission process induced by neutrons in neptunium-based fuels. In the present research, we will study the neutron-induced fission of 237Np nucleus. The cross-section, mass distribution, yields of isotopes of interest, average number of emitted prompt neutrons, neutron fission spectra, and other parameters are obtained. The mathematical modeling is done partially by using the theoretical models implemented in Talys software (TALYS-1.2) and by computer codes realized by the authors. The presented results are compared with the available data and are of interest in the JINR projects for the design of new neutron facilities destined for researches.


I. Ruskov, A. Goverdovski, W. Furman, Y. Kopatch, O. Shcherbakov, F.J. Hambsch, S. Oberstedt, A. Oberstedt. Neutron induced fission of 237Np - status, challenges and opportunities. EPJ Web of Conferences 169, 00021 (2018).

I. Ruskov, Yu.N. Kopatch, V.M. Bystritsky, V.R. Skoy, V.N. Shvetsov, F.J. Hambsch, S. Oberstedt, R. Capote Noy, P.V. Sedyshev, D.N. Grozdanov, I.Zh. Ivanov, V.Yu. Aleksakhin, E.P. Bogolubov, Yu.N. Barmakov, S.V. Khabarov, A.V. Krasnoperov, A.R. Krylov et al. TANGRA-swetup for the investigation of nuclear fission induced by 14.1 MeV neutrons. Phys. Proc. 64, 163 (2015).

I. Ruskov, Y. Kopatch, (TANGRA Coll.); TANGRA - an experimental setup for basic and applied nuclear research by means of 14.1MeV neutrons. EPJ Web of Conferences 146, 03024 (2017).

AFI ADCM, a digital pulse processing system for nuclear physics experiments; ADCM16- LTC, a 16-channel/14 bit/100MHz ADC board with signal processing core.

G. Audi, O. Berssilon, J. Blachot, A. H. Wapstra. The NUBASE evaluation of nuclear and decay properties. Nucl. Phys. A 729, 3 (2003).

G. Audi, A.H., Wapstra, C. Thibault. The AME2003 atomic mass evaluation: (II), Tables, graphs and references. Nucl. Phys. A 729, 337 (2003).

E.P. Shabalin, V.L. Aksenov, G.G. Komyshev, A.D. Rogov. Highly intense pulsed neutron source based on Neptunium. Preprint JINR Dubna, P13-2017-57 (2017).

E. P. Shabalin, M.V. Ryazin. Dynamics of power pulses in the Neptunium research Reactor, Preprint JINR Dubna, P-13-2017-69 (2017).

E.P. Shabalin, G.N. Pogodaev. On optimization of fast neutrons impulse reactors (JINR Dubna Communication, 1966) (in Russian).

V.L. Aksenov, V.D. Ananev, G.G. Komyshev, A.D. Rogov, E.P. Shabalin. On limit of neutron flux in pulsed neutron sources based on fission. Preprint JINR Dubna, P3-2016-90 (2016).

V.L. Aksenov, V.D. Ananev, G.G. Komyshev, A.D. Rogov, E.P. Shabalin. On the limit of neutron fluxes in pulsed sources based on the fission reactions. Phys. Part. Nucl. Lett. 14 (5), 788 (2017).

V.L. Aksenov. JINR Dubna, A 15-year forward look at neutron facilities in JINR. Preprint E3-2017-12 (2017).

TALYS-1.2 computer code. http: //

EXFOR Nuclear Reaction Data. http: //

A.J. Koning, S. Hilaire, M.C. Duijvestijn, "TALYS-1.0". Proceedings of the International Conference on Nuclear Data for Science and Technology, April 22-27, 2007, Nice, France. Edit. by O. Bersillon, F. Gunsing, E. Bauge, R. Jacqmin, S. Leray, EDP Sciences, 211 (2008). URL: http: //

R. Vandenbosch, J.R. Huizenga. Nuclear Fission (Academic Press, Inc., 1973).

C. Waggemans. The Nuclear Fission Process (CRC, 1991).

A.J. Koning, D. Rochman. Modern nuclear data evaluation: Straight from nuclear physics to applications. J. Korean Phys. Soc. 59, 773 (2011).

Y. Sawant, A. Saxena, R.K. Choudhury, B.K. Nayak, L.M. Pant, et. al. Temperature and fissility dependence of fragment mass variance in heavy ion induced fission. Phys. Rev. C 70, 051602(R) (2004).

A.J. Koning, S. Hilaire, S. Goriely. Global and local level density models. Nucl Phys. A 810, 13 (2008).

D.L. Hill, J.A. Wheeler. Nuclear constitution and the interpretation of fission phenomena. Phys. Rev v 89, 1102 (1953).

W. Hauser, H. Feshbach. The inelastic scattering of neutrons. Phys. Rev. v 87, 366 (1952).

U. Brosa, S. Grossmann, A. Muller. Nuclear scission. Phys. Rep. Vol. 197, 167 (1990).

M. Diakaki et al. (HKS(JLab E05-115) Collaboration). High resolution spectroscopic study of 10Be. Phys. Rev. C 93, 034614 (2016).

R.J. Jiacoletti, W.K. Brown, H.G. Olson. Fission cross sections of neptunium-237 from 20 eV to 7 MeV determined from a nuclear-explosive experiment. Nucl. Sci. Engin. 48, 412 (1972).

O. Iwamoto. Systematics of prompt fission neutron spectra. J. Nuc. Sci. Technology 45 (9), 910 (2008).

T. Ohsawa, et al. Proc. 1998 Symp. on Nuclear Data, Nov. 19-20, 1998, Tokai, JAERI, Japan, JAERI-Conf 99-002, p. 130 (1999).




How to Cite

Oprea, C., Ahmad, M., Baker, J., & Oprea, A. (2022). Mathematical Modeling of Neutron Induced Fission of 237Np Nucleus. Ukrainian Journal of Physics, 67(1), 11.



Fields and elementary particles