Infrared Spectroscopy of Ultraviolet-Irradiated Carbon Nanotubes

  • I. Ovsiienko Taras Shevchenko National University of Kyiv, Faculty of Physics
  • T. Len Taras Shevchenko National University of Kyiv, Faculty of Physics
  • L. Matzui Taras Shevchenko National University of Kyiv, Faculty of Physics
  • O. Syvolozhskyi Taras Shevchenko National University of Kyiv, Faculty of Physics
  • D. Shpylka Taras Shevchenko National University of Kyiv, Faculty of Physics
  • D. Naumova Taras Shevchenko National University of Kyiv, Faculty of Chemistry
Keywords: multiwall carbon nanotubes, infrared spectroscopy, ultra violet irradiation

Abstract

The possibility of using the UV irradiation for a functionalization of carbon nanotubes with different degrees of structural perfection is considered. In investigations, the method of infrared spectroscopy is used. A change in the number of functional groups under the short-term UV irradiation of specimens with multiwall carbon nanotubes is estimated by a change in the relative intensity of the IR spectral bands corresponding to vibrations of the functional groups in comparison with the relative intensity of the band corresponding to vibrations of the carbon atoms in graphite.

References

D.A. Usanov, A.V. Skripal', A.V. Romanov. Complex permittivity of composites based on dielectric matrices with carbon nanotubes. Tech. Phys. 56, 102 (2011). https://doi.org/10.1134/S1063784211010257

S.H. Jeong, J. Ko, J. Park, W. Park. A sonochemical route to single-walled carbon nanotubes under ambient conditions. J. Am. Chem. Soc. 126, 15982 (2004). https://doi.org/10.1021/ja0451867

K. Awasthi, A.S., O.N. Srivastava. Synthesis of carbon nanotubes. J. Nanosci. Nanotechnol. 5 (10), 1616 (2005). https://doi.org/10.1166/jnn.2005.407

D. Bikiaris, A. Vassiliou, K. Chrissafis, K.M. Paraskevopoulos, A. Jannakoudakis, A. Docoslis. Effect of acid treated multiwalled carbon nanotubes on the mechanical, permeability, thermal properties and thermo-oxidative stability of isotactic polypropylene. Polym. Degrad. Stabil. 93, 952 (2008). https://doi.org/10.1016/j.polymdegradstab.2008.01.033

V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsis, C. Galiotis. Chemical oxidation of multiwalled carbon nanotubes. Carbon 46, 833 (2008). https://doi.org/10.1016/j.carbon.2008.02.012

J. Zhang, H. Zou, Q. Qing, Y. Yang, Q. Li, Z. Liu, X. Guo, Z. Du. Effect of chemical oxidation on the structure of single-walled carbon nanotubes. J. Phys. Chem. B 107, 3712 (2003). https://doi.org/10.1021/jp027500u

M.N. Tchoul, W.T. Ford, G. Lolli, D.E. Resasco, S. Arepalli. Effect of mild nitric acid oxidation on dispersability, size, and structure of single-walled carbon nanotubes. Chem. Mater. 19, 5765 (2007). https://doi.org/10.1021/cm071758l

V.E. Muradyan, E.A. Sokolov, S. Babenko, A. Moravsky. Microwave dielectric properties of composites modified by carbon nanostructures. Tech. Phys. 55, 242 (2010). https://doi.org/10.1134/S1063784210020131

R. Zhang, A. Dowden, H. Deng, M. Baxendale. Conductive network formation in the melt of carbon nanotube/thermoplastic polyurethene composite. Compos. Sci. Technol. 69, 1499 (2009). https://doi.org/10.1016/j.compscitech.2008.11.039

A. Naumenko, V. Yashchuk, V. Bliznyuk, S. Singamaneni. Peculiarities of Raman spectra of polyurethane/carbon nanotube composite. Eur. Phys. J. B 85, 120 (2012). https://doi.org/10.1140/epjb/e2012-20628-y

I.V. Ovsiienko, T.A. Len, L. Yu. Matzui, O.A. Golub, Yu.I. Prylutskyy, P.C. Eklund. The effect of thermal and chemical treatment on the structural and phase composition of nanocarbon materials. Materials Science and Engineering C 26 (5-7), 1180 (2006). https://doi.org/10.1016/j.msec.2005.09.063

Published
2020-04-17
How to Cite
Ovsiienko, I., Len, T., Matzui, L., Syvolozhskyi, O., Shpylka, D., & Naumova, D. (2020). Infrared Spectroscopy of Ultraviolet-Irradiated Carbon Nanotubes. Ukrainian Journal of Physics, 65(4), 336. https://doi.org/10.15407/ujpe65.4.336
Section
Structure of materials