Hall Study of Conductive Channels Formed in Germanium by Beams of High-Energy Light Ions

Authors

  • S.V. Lysochenko Institute of High Technologies, Taras Shevchenko National University of Kyiv, Cooperation Center of Taras Shevchenko National University of Kyiv and Company “T.M.M.” Ltd.
  • Yu.S. Zharkikh Institute of High Technologies, Taras Shevchenko National University of Kyiv
  • O.G. Kukharenko Institute of High Technologies, Taras Shevchenko National University of Kyiv, Cooperation Center of Taras Shevchenko National University of Kyiv and Company “T.M.M.” Ltd.
  • O.V. Tretiak Institute of High Technologies, Taras Shevchenko National University of Kyiv
  • M.G. Tolmachov Cooperation Center of Taras Shevchenko National University of Kyiv and Company “T.M.M.” Ltd.

DOI:

https://doi.org/10.15407/ujpe66.1.62

Keywords:

Hall investigations, implantation, protons, a-particles, buried conductive channels

Abstract

The implantation of the high-energy ions of H+ or He+ in germanium leads to the creation of buried conductive channels in its bulk with equal concentrations of acceptor centers. These centers are the structure defects of the crystal lattice which arise in the course of deceleration of high-energy particles. This method of introducing electrically active defects is similar to the doping of semiconductors by acceptor-type impurities. It has been established that the density of defects increases with the implantation dose till ≈5×10^15 cm−2. The further increase of the implantation dose does not affect the level of doping. In the range of applied doses (10^12–6×10^16) cm−2, the Hall mobility of holes in the formed conducting channels is practically independent of the implanted dose and is about (2-3)×10^4 cm2/Vs at 77 K. The doping of
the germanium by high-energy ions of H+ or He+ to obtain conducting regions with high hole mobility can be used in the microelectronics technology.

References

C. Riddet, J.R. Watling, K.-H. Chan, E.H.C. Parker, T.E. Whall, D.R. Leadley, A. Asenov. Hole mobility in germanium as a function of substrate and channel orientation, strain, doping, and temperature. IEEE Trans. Electron Dev. 59 (7), 1878 (2012).

https://doi.org/10.1109/TED.2012.2194498

T. Hosoi, Y. Suzuki, T. Shimura, H. Watanabe. Mobility characterization of Ge-on-insulator metal-oxide-semiconductor field-effect transistors with striped Ge channels fabricated by lateral liquid-phase epitaxy. Appl. Phys. Lett. 105, 173502 (2014).

https://doi.org/10.1063/1.4900442

S. Dissanayake, Y.Zhao, S. Sugahara, M. Takenaka,S. Takagi. Channel direction, effective field, and temperature dependences of hole mobility in (110)- oriented Geon-insulator p-channel metal-oxide-semiconductor field-

effect transistors fabricated by Ge condensation technique. J. Appl. Phys. 109, 033709 (2011).

https://doi.org/10.1063/1.3537919

Yu. X. Kang, J. Zhang, R. Takenaka, S. Takagi. Characterization of ultrathin-body germanium-on-insulator (GeOI) structures and MOSFETs on flipped Smart-CutTM GeOI substrates. Solid-State Electron. B 115, 120 (2016).

https://doi.org/10.1016/j.sse.2015.08.021

Z. Zheng, X. Yu, M. Xie, R. Cheng, R. Zhang, Y. Zhao. Demonstration of ultra-thin buried oxide germanium-oninsulator MOSFETs by direct wafer bonding and polishing techniques. Appl. Phys. Lett. 109, 023503 (2016).

https://doi.org/10.1063/1.4955486

B. Yurong, Xu. Jingping, L. Lu, F. Minmin. Simulation of electrical characteristics and structural optimization for

small-scaled dual-gate GeOI MOSFET with high-k gate dielectric. Chinese J. of Semiconductors 35 (9), 094002-1 (2014).

https://doi.org/10.1088/1674-4926/35/9/094002

Yu.S. Zharkikh, S.V. Lysochenko, O.G. Kukharenko, O.V. Tretiak. Conductive channels formed in germanium by high-energy protons and alpha particles. Nucl. Instr. Meth. Phys. Rev. B 441, 63 (2019).

https://doi.org/10.1016/j.nimb.2018.12.012

F. Watt, M. B. Breese, A.A. Bettiol, J.A. van Kan. Proton beam writing. Mater. Today. 10 (6), 20 (2007).

https://doi.org/10.1016/S1369-7021(07)70129-3

V.V. Kozlovski, V.A. Kozlov, V.N. Lomasov. Modification of semiconductors by proton beams. Phys. Tech. Semiconductors 34 (2), 129 (2000).

https://doi.org/10.1134/1.1187921

Yu S. Zharkikh, S.V. Lysochenko, S.A. Lebed, O.G. Kukharenko, N.G. Tolmachev, O.V. Tretiak. Formation of

hidden conductive channels under bombardment of germanium by high energy protons. Techn. Phys. Lett. 39 (10), 851 (2013).

https://doi.org/10.1134/S106378501310012X

S. Lebed, M. Tolmachov, O. Kukharenko, O. Veselov. Recent status of the Kiev nuclear probe. Nucl. Instrum. Methods Phys. Res. Section B 267 (12-13), 2013 (2009).

https://doi.org/10.1016/j.nimb.2009.03.007

J.F. Ziegler, M.D. Ziegler, J.P. Biersack. SRIM: The Stopping and Range of Ions in Matter (Cadence Design Systems, 2008) [ISBN: 9780965420716, 096542071X].

V.A. Kozlov, V.V. Kozlovski. Doping of semiconductors using radiation defects produced by irradiation with pronons and alpha particules. Semiconductors 35 (7), 735 (2001).

https://doi.org/10.1134/1.1385708

P.F.P. Fichtner, J.R. Kaschny, A. Kling, H. Trinkaus, R.A. Yankov, A. Mucklich, W. Skorupa, F.C. Zawislak, L. Amaral, M.F. da Silva, J.C. Soares. Nucleation and growth of platelet bubble structures in He implanted silicon. Nucl. Instrum. Methods Phys. Res. B 136-138, 460 (1998).

https://doi.org/10.1016/S0168-583X(97)00714-3

J.M. Zahler, A. Fontcuberta, I. Morral, M.J. Griggs, H.A. Atwater, Y.J. Chabal. Role of hydrogen in hydrogen-

induced layer exfoliation of germanium. Phys. Rev. B 75, 035309 (2007).

I.P. Ferain, K.Y. Byun, C.A. Colinge, S. Brightup, M.S. Goorsky. Low temperature exfoliation process in hydrogen-implanted germanium layers. J. Appl. Phys. 107, 054315 (2010).

https://doi.org/10.1063/1.3326942

L.N. Abessonova, V.N. Dobrovolskii, Y.S. Zharkikh, O.S. Frolov, A.Y. Shik. On the interpretation of Hall measurements in inhomogeneous semiconductors. Phys. Tech. Semicond. 10 (2), 406 (1976).

F. Letertre, C. Deguet, C. Richtarch, B. Faure, J.M. Hartmann, F. Chieu, A. Beaumont, J. Dechamp, C. Morales, F. Allibert, P. Perreau, S. Pocas, S. Personnic, C. Lagahe- Blanchard, B. Ghyselen, Y.M. Le Vaillant, Jalaguier, N. Kernevez, C. Mazure. Germanium-On-Insulator (GeOI) structure realized by the Smart CutTM technology. Solid-State Electronics 809, B4.4 (2011).

https://doi.org/10.1557/PROC-809-B4.4

Chr. Maleville, C. Mazure. Smart-cut technology: From 300 mm ultrathin SOI production to advanced engineered substrates. Solid-State Electron. 48 (6), 1055 (2004).

https://doi.org/10.1016/j.sse.2003.12.029

Downloads

Published

2021-01-29

How to Cite

Lysochenko, S., Zharkikh, Y., Kukharenko, O., Tretiak, O., & Tolmachov, M. (2021). Hall Study of Conductive Channels Formed in Germanium by Beams of High-Energy Light Ions. Ukrainian Journal of Physics, 66(1), 62. https://doi.org/10.15407/ujpe66.1.62

Issue

Section

Semiconductors and dielectrics