Galaxy Rotation Curves in the µ-Deformation Based Approach to Dark Matter
DOI:
https://doi.org/10.15407/ujpe64.11.1042Keywords:
dark matter, м-deformation, deformed Lane–Emden equation, galaxy rotation curvesAbstract
We elaborate further the м-deformation-based approach to the modeling of dark matter, in addition to the earlier proposed use of м-deformed thermodynamics. Herein, we construct м-deformed analogs of the Lane–Emden equation (for density profiles) and find their solutions. Using these, we plot the rotation curves for a number of galaxies. Different curves describing the chosen galaxies are labeled by respective (different) values of the deformation parameter м. As a result, the use of м-deformation leads to the improved agreement with observational data. For all the considered galaxies, the obtained rotation curves (labeled by м) agree better with data, as compared to the well-known Bose–Einstein condensate model results of T. Harko. Besides, for five of the eight cases of galaxies, we find a better picture for rotation curves, than the corresponding Navarro–Frenk–White (NFW) curves. The possible physical meaning of the parameter м basic for this version of м-deformation is briefly discussed.
References
A. Suarez, V. Robles, T. Matos. A review on the scalar field/Bose-Einstein condensate dark matter model. Astroph. and Space Sci. Proc. 38, 107 (2013). https://doi.org/10.1007/978-3-319-02063-1_9
L. Hui, J. Ostriker, S. Tremaine, E. Witten. Ultralight scalars as cosmological dark matter. Phys. Rev. D 95, 043541 (2017). https://doi.org/10.1103/PhysRevD.95.043541
A. Diez-Tejedor, A. Gonzalez-Morales, S. Profumo. Dwarf spheroidal galaxies and Bose-Einstein condensate dark matter. Phys. Rev. D 90, 043517 (2014). https://doi.org/10.1103/PhysRevD.90.043517
E. Kun, Z. Keresztes, S. Das, L.A. Gergely. Slowly rotating Bose-Einstein Condensate confronted with the rotation curves of 12 dwarf galaxies. Symmetry 10, 520 (2018). https://doi.org/10.3390/sym10100520
D. Bettoni, M. Colombo, S. Liberati. Dark matter as a Bose-Einstein Condensate: the relativistic non-minimally coupled case. JCAP 02, 004 (2014). https://doi.org/10.1088/1475-7516/2014/02/004
D. Bettoni, S. Liberati, L. Sindoni. Extended ?CDM: generalized non-minimal coupling for dark matter fluids. JCAP 11, 007 (2011). https://doi.org/10.1088/1475-7516/2011/11/007
Z. Ebadi, B. Mirza, H. Mohammadzadeh. Infinite statistics condensate as a model of dark matter. JCAP 11, 057 (2013). https://doi.org/10.1088/1475-7516/2013/11/057
A. Gavrilik, I. Kachurik, M. Khelashvili, A. Nazarenko. Condensate of м-Bose gas as a model of dark matter. Physica A 506, 835 (2018). https://doi.org/10.1016/j.physa.2018.05.001
T. Harko. Bose-Einstein condensation of dark matter solves the core/cusp problem. JCAP 11, 022 (2011). https://doi.org/10.1088/1475-7516/2011/05/022
A.P. Rebesh, I.I. Kachurik, A.M. Gavrilik. Elements of м-calculus and thermodynamics of м-Bose gas model. Ukr. J. Phys. 58, 1182 (2013). https://doi.org/10.15407/ujpe58.12.1182
Se-Heon Oh, W. de Blok, E. Brinks, F. Walter, R. Jr. Dark and luminous matter in THINGS dwarf galaxies. Astron. J. 141, No. 6, 193 (2011). https://doi.org/10.1088/0004-6256/141/6/193
K. Oman, J. Navarro, A. Fattahi, C. Frenk, T. Sawala, S. White, R. Bower, R. Crain, M. Furlong, M. Schaller, J. Schaye, T. Theuns. The unexpected diversity of dwarf galaxy rotation curves. MNRAS 452, 3650 (2015). https://doi.org/10.1093/mnras/stv1504
R. Swaters, M. Verheijen, M. Bershady, D. Andersen. The kinematics in the core of the low surface brightness galaxy DDO 39. Astrophys. J. 587, L19 (2003). https://doi.org/10.1086/375045
S. Deser, R.P. Woodard. Nonlocal cosmology. Phys. Rev. Lett. 99, 111301 (2007). https://doi.org/10.1103/PhysRevLett.99.111301
F.W. Hehl, B. Mashhoon. Nonlocal gravity simulates dark matter. Phys. Lett. B 673, 279 (2009). https://doi.org/10.1016/j.physletb.2009.02.033
I. Arraut. Can a non-local model of gravity reproduce Dark Matter effects in agreement with MOND? Int. J. Mod. Phys. D 23, 1450008 (2014). https://doi.org/10.1142/S0218271814500084
K. Fernandes, A. Mitra. Electrovacuum solutions in non-local gravity. Phys. Rev. D 97, 105003 (2018). https://doi.org/10.1103/PhysRevD.97.105003
S.Y. Park. Revival of the Deser-Woodard nonlocal gravity model: Comparison of the original nonlocal form and a localized formulation. Phys. Rev D 97, 044006 (2018). https://doi.org/10.1103/PhysRevD.97.044006
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.