Experimental Study of Raman Spectra of Some Aromatic Hydrocarbons

Authors

  • B. Eshchanov Chirchik State Pedagogical Institute, National University of Uzbekistan
  • Sh. Otajonov National University of Uzbekistan
  • G. Mukhamedov Chirchik State Pedagogical Institute
  • I. Doroshenko Taras Shevchenko National University of Kyiv
  • O. Karpova Turin Polytechnic University in Tashkent
  • Sh. Allakulieva National University of Uzbekistan

DOI:

https://doi.org/10.15407/ujpe65.4.284

Keywords:

vibrational spectroscopy, bromobenzene, dioxane, toluene, deformational vibrations, torsional vibrations, potential barrier

Abstract

The vibrational spectra of liquid aromatic hydrocarbons – bromobenzene, dioxane, toluene – are studied in a wide frequency range by means of Raman spectroscopy. The manifestation of torsional vibrations of individual groups of atoms is established from the obtained data on the low-frequency spectra. The possibility of using a semiempirical method for calculating the potential barriers of methyl and halide groups in benzene derivatives is shown.

References

B.J. Ka, E. Geva. Vibrational energy relaxation of polyatomic molecules in liquid solution via the linearized semiclassical method. J. Phys. Chem. A 110, 9555 (2006). https://doi.org/10.1021/jp062363c

S.A. Kirillov, A. Morresi, M. Paolantoni. Recovery of the depolarization ratio of single lines fromoverlapping isotropic and anisotropic Raman profiles and assignment of molecular vibrations, with special reference to toluene and toluene-d8. J. Raman Spectrosc. 38, 383 (2007). https://doi.org/10.1002/jrs.1657

D. Wang, K. Mittauer, N. Reynolds. Raman scattering of carbon disulfide: The temperature effect. Am. J. Phys. 77, 1130 (2009). https://doi.org/10.1119/1.3226562

J. Lindner, P. Vohringer, M.S. Pshenichnikov, D. Cringus, D.A. Wiersma, M. Mostovoy. Vibrational relaxation of pure liquid water. Chem. Phys. Lett. 421, 329 (2006). https://doi.org/10.1016/j.cplett.2006.01.081

H.J. Bakker, A.J. Lock, D. Madsen. Strong feedback effect in the vibrational relaxation of liquid water. Chem. Phys. Lett. 384, 236 (2004). https://doi.org/10.1016/j.cplett.2003.12.022

A.J. Lock, H.J. Bakker. Temperature dependence of vibrational relaxation in liquid H2O. J. Chem. Phys. 117, 1708 (2002). https://doi.org/10.1063/1.1485966

V. Pogorelov, L. Bulavin, I. Dorоshenko, O. Fesjun, O. Veretennikov. The structure of liquid alcohols and the temperature dependence of vibrational bandwidth. J. Mol. Struc. 708, 61 (2004). https://doi.org/10.1016/j.molstruc.2004.03.003

L. Bulavin, I. Doroshenko, O. Lizengevych., V. Pogorelov, L. Savransky, O. Veretennikov. Raman study of molecular associations in methanol. In: Proceedings of SPIE - The International Society for Optical Engineering 5507, 138 (2004). https://doi.org/10.1117/12.569594

F.H. Tukhvatullin, V.E. Pogorelov, A. Jumabaev, H. Hushvaktov, A. Absanov, A. Shaymanov. Aggregation of molecules in liquid methyl alcohol and its solutions. Raman spectra and ab initio calculations. J. Mol. Struct. 881, 52 (2008). https://doi.org/10.1016/j.molstruc.2007.08.036

F.H. Tukhvatullin, V.E. Pogorelov, A. Jumabaev, H. Hushvaktov, A. Absanov, A. Usaгоv. Polarized components of Raman spectra of O-H vibrations in liquid water. J. Mol. Liquids. 160, 88 (2011). https://doi.org/10.1016/j.molliq.2011.02.015

F.H. Tukhvatullin, A. Jumabaev, G. Muradov, H. Hushvaktov, A. Absanov. Raman spectra of C-H vibrations of acetonitrile in aqueous and other solutions. Experimental results and ab initio calculations. J. Raman Spectrosc. 36, 932 (2005). https://doi.org/10.1002/jrs.1386

Jr. C.W. Bauschlicher, A. Ricca. On the calculation of the vibrational frequencies of C6H4. Chem. Phys. Lett. 566, 1 (2013). https://doi.org/10.1016/j.cplett.2013.02.048

B. Eshchanov, Sh. Otajonov A. Isamatov. On possible models of thermal motion of molecules and temperature effect on relaxation of optical anisotropy in bromine benzene. Ukr. J. Phys. 56, 1178 (2011).

B. Eshchanov, Sh. Otajonov, A. Isamatov, D. Babajanov. Dynamics of relaxation processes in liquids: Analysis of oscillation and orientation spectra. J. Mol. Liq. 202, 148 (2015). https://doi.org/10.1016/j.molliq.2014.12.005

Y. Takasu, S. Matsumoto, Y. Fujii, I. Nishio. Raman study of the low temperature behavior of tetrahydrofuran molecule in the cage of clathrate hydrate. Chem. Phys. Lett. 627, 39 (2015). https://doi.org/10.1016/j.cplett.2015.03.037

V. Pogorelov, A. Yevglevsky, I. Doroshenko, L. Berezovchuk, Yu. Zhovtobryuch. Nanoscale molecular clusters and vibrational relaxation in simple alcohols. Superlattices and microstructures 44, 571 (2008). https://doi.org/10.1016/j.spmi.2008.01.014

A. Vasylieva, I. Doroshenko, Y. Vaskivskyi, Y. Chernolevska, V. Pogorelov. FTIR study of condensed water structure. J. Mol. Struct. 1167, 232 (2018). https://doi.org/10.1016/j.molstruc.2018.05.002

V. Pogorelov, Y. Chernolevska, Y. Vaskivskyi. Structural transformations in bulk and matrix-isolated methanol from measured and computed infrared spectroscopy. J. Mol. Liq. 216, 53 (2016). https://doi.org/10.1016/j.molliq.2015.12.099

I. Doroshenko, V. Balevicius, G. Pitsevich, K. Aidas, V. Sablinskas, V. Pogorelov. FTIR/PCA study of propanol in argon matrix: The initial stage of clustering and conformational transitions. Fiz. Nizk. Temp. 40, 1384 (2014). https://doi.org/10.1063/1.4902228

R.L. Redington. The infrared spectrum and barriers hindering internal rotation in H2S2, CF3SH, and CF3SD. J. Mol. Spectr. 9, 469 (1962). https://doi.org/10.1016/0022-2852(62)90252-7

B. Eshchanov, Sh. Otajonov, Kh. Rakhmatullaeva. Application of Raman scattering of light to study the structure of molecules. Intern. J. Sci. & Engin. Research. 9, 1532 (2018).

G.А. Pitsevich, I.Yu. Doroshenko, V.Ye. Pogorelov, Е.N. Kozlovskaya, T. Borzda, V. Sablinskas, V. Balevicius. Long-wave Raman spectra of some normal alcohols. Vibr. Spectroscopy. 72, 26 (2014). https://doi.org/10.1016/j.vibspec.2014.02.003

Sh. Otajonov, B. Eshchanov, A. Isamatov. Manifestation of substance molecular structure in temperature effects of light scattering. J. Chem. Chem. Engin. 7, 791 (2013).

A. Weissberger, jr., E.S. Proskauer, J.A. Riddik, E.E. Toops. Organic Solvents, Physical Properties and Methods of Purification (Interscience, 1955).

B. Desbat, P. Huong. Structure of liquid hydrogen fluoride studied by infrared and Raman spectroscopy. J. Chem. Phys. 78, 6377 (1983). https://doi.org/10.1063/1.444697

D.E. Logan. On the isotropic Raman spectra of isotopic binary mixtures. Mol. Phys. 58, 97 (1986). https://doi.org/10.1080/00268978600101011

V. Magnasco. An empirical method for calculating barriers to internal rotation in simple molecules. Il Nuovo Cimento. 24, 425 (1962). https://doi.org/10.1007/BF02751353

B.L. Crawford. The partition functions and energy levels of molecules with internal torsional motions. J. Chem. Phys. 8, 273 (1940). https://doi.org/10.1063/1.1750642

W.G. Fateley, F.A. Miller. Torsional frequencies in the far infrared - II: Molecules with two or three methyl rotors. Spectrochim. Acta. 18, 977 (1962). https://doi.org/10.1016/S0371-1951(62)80209-4

Downloads

Published

2020-04-17

How to Cite

Eshchanov, B., Otajonov, S., Mukhamedov, G., Doroshenko, I., Karpova, O., & Allakulieva, S. (2020). Experimental Study of Raman Spectra of Some Aromatic Hydrocarbons. Ukrainian Journal of Physics, 65(4), 284. https://doi.org/10.15407/ujpe65.4.284

Issue

Section

Optics, atoms and molecules