Spinor Moving Frame, Polarized Scattering Equation for 11D Supergravity, and Ambitwistor Superstring


  • I. Bandos Department of Theoretical Physics, University of the Basque Country UPV/EHU, IKERBASQUE, Basque Foundation for Science




supersymmetry, amplitudes, supergravity, higher dimensions, spinor moving frame, ambitwistor string


We reveal and discuss the spinor moving frame origin of the formalism of the 11D polarized scattering equation by Geyer and Mason [21]. In particular, we use the spinor moving frame formulation of the 11D ambitwistor superstring [35] considered as a dynamical system in the 11D superspace enlarged by tensorial central charge coordinates to rigorously obtain the expression for the spinor function on a Riemann sphere and the polarized scattering equation which that obeys.


Z. Bern, J.J. Carrasco, L.J. Dixon, H. Johansson, R. Roiban. Amplitudes and ultraviolet behavior of N = 8 supergravity. Fortsch. Phys. 59, 561 (2011). https://doi.org/10.1002/prop.201100037

H. Elvang, Y.t. Huang. Scattering Amplitudes in Gauge Theory and Gravity (CUP, 2015) [ISBN: 9781107069251]. https://doi.org/10.1017/CBO9781107706620

N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, A.B. Goncharov, A. Postnikov, J. Trnka. Grassmannian Geometry of Scattering Amplitudes (CUP, 2015). https://doi.org/10.1017/CBO9781316091548

S. Caron-Huot, L.J. Dixon, F. Dulat, M. von Hippel, A.J. McLeod, G. Papathanasiou. Six-gluon amplitudes in planar N = 4 super-Yang-Mills theory at six and seven loops. arXiv:1903.10890 [hep-th] and refs therein.

R. Britto, F. Cachazo, B. Feng, E. Witten. Direct proof of tree-level recursion relation in Yang-Mills theory. Phys. Rev. Lett. 94, 181602 (2005). https://doi.org/10.1103/PhysRevLett.94.181602

M. Bianchi, H. Elvang, D.Z. Freedman. Generating tree amplitudes in N = 4 SYM and N = 8 SG. JHEP 0809, 063 (2008). https://doi.org/10.1088/1126-6708/2008/09/063

N. Arkani-Hamed, F. Cachazo, J. Kaplan.What is the simplest quantum field theory? JHEP 1009, 016 (2010). https://doi.org/10.1007/JHEP09(2010)016

A. Brandhuber, P. Heslop, G. Travaglini. A note on dual superconformal symmetry of the N = 4 super Yang-Mills S-matrix. Phys. Rev. D 78, 125005 (2008). https://doi.org/10.1103/PhysRevD.78.125005

L.J. Mason, D. Skinner. Dual superconformal invariance, momentum twistors and grassmannians. JHEP 0911, 045 (2009). https://doi.org/10.1088/1126-6708/2009/11/045

P. Heslop, A.E. Lipstein. On-shell diagrams for N = 8 supergravity amplitudes. JHEP 1606, 069 (2016). https://doi.org/10.1007/JHEP06(2016)069

E. Herrmann, J. Trnka. Gravity on-shell diagrams. JHEP 1611, 136 (2016). https://doi.org/10.1007/JHEP11(2016)136

C. Cheung, D. O'Connell. Amplitudes and spinor-helicity in six dimensions. JHEP 0907, 075 (2009). https://doi.org/10.1088/1126-6708/2009/07/075

S. Caron-Huot, D. O'Connell. Spinor helicity and dual conformal symmetry in ten dimensions. JHEP 1108, 014 (2011). https://doi.org/10.1007/JHEP08(2011)014

R.H. Boels, D. O'Connell. Simple superamplitudes in higher dimensions. JHEP 1206, 163 (2012). https://doi.org/10.1007/JHEP06(2012)163

R.H. Boels. Maximal R-symmetry violating amplitudes in type IIB superstring theory. Phys. Rev. Lett. 109, 081602 (2012). https://doi.org/10.1103/PhysRevLett.109.081602

Y. Wang, X. Yin. Constraining higher derivative supergravity with scattering amplitudes. Phys. Rev. D 92 (4), 041701 (2015). https://doi.org/10.1103/PhysRevD.92.041701

Y. Wang, X. Yin. Supervertices and non-renormalization conditions in maximal supergravity theories. arXiv:1505.05861 [hep-th].

I. Bandos. Britto-Cachazo-Feng-Witten-type recurrent relations for tree amplitudes of D=11 supergravity. Phys. Rev. Lett. 118, 031601 (2017). https://doi.org/10.1103/PhysRevLett.118.031601

I. Bandos. An analytic superfield formalism for tree superamplitudes in D = 10 and D = 11. JHEP 1805, 103 (2018). https://doi.org/10.1007/JHEP05(2018)103

I. Bandos. Spinor frame formalism for amplitudes and constrained superamplitudes of 10D SYM and 11D supergravity. JHEP 1811, 017 (2018). https://doi.org/10.1007/JHEP11(2018)017

Y. Geyer, L. Mason. The M-theory S-matrix. arXiv:1901.00134 [hep-th].

D.V. Uvarov. Spinor description of D = 5 massless low-spin gauge fields. Class. Quant. Grav. 33, 135010 (2016). https://doi.org/10.1088/0264-9381/33/13/135010

T. Adamo, D. Skinner, J. Williams. Twistor methods for AdS5. JHEP 1608, 167 (2016). https://doi.org/10.1007/JHEP08(2016)167

D.V. Uvarov. Multitwistor mechanics of massless superparticle on AdS5 × S5 superbackground. arXiv:1907.13613 [hep-th].

B. Nagaraj, D. Ponomarev. Spinor-helicity formalism for massless fields in AdS4. Phys. Rev. Lett. 122, 101602 (2019). https://doi.org/10.1103/PhysRevLett.122.101602

F. Cachazo, S. He, E.Y. Yuan. Scattering of massless particles in arbitrary dimensions. Phys. Rev. Lett. 113, 171601 (2014). https://doi.org/10.1103/PhysRevLett.113.171601

F. Cachazo, S. He, E.Y. Yuan. Scattering equations and matrices: From Einstein to Yang-Mills, DBI and NLSM. JHEP 1507, 149 (2015). https://doi.org/10.1007/JHEP07(2015)149

D.J. Gross, P.F. Mende. The high-energy behavior of string scattering amplitudes. Phys. Lett. B 197, 129 (1987).


D.J. Gross, P.F. Mende. String theory beyond the Planck scale. Nucl. Phys. B 303, 407 (1988). https://doi.org/10.1016/0550-3213(88)90390-2

D.J. Gross, J.L. Manes. The high-energy behavior of open string scattering. Nucl. Phys. B 326, 73 (1989). https://doi.org/10.1016/0550-3213(89)90435-5

F. Cachazo, N. Early, A. Guevara, S. Mizera. Scattering equations: From projective spaces to tropical grassmannians. JHEP 1906, 039 (2019). https://doi.org/10.1007/JHEP06(2019)039

Y. Geyer, L. Mason. Polarized scattering equations for 6D superamplitudes. Phys. Rev. Lett. 122, 101601 (2019). https://doi.org/10.1103/PhysRevLett.122.101601

L. Mason, D. Skinner. Ambitwistor strings and the scattering equations. JHEP 1407, 048 (2014). https://doi.org/10.1007/JHEP07(2014)048

T. Adamo, E. Casali, D. Skinner. Ambitwistor strings and the scattering equations at one loop. JHEP 1404, 104 (2014). https://doi.org/10.1007/JHEP04(2014)104

I. Bandos. Twistor/ambitwistor strings and null-superstrings in spacetime of D = 4, 10 and 11 dimensions. JHEP 1409, 086 (2014). https://doi.org/10.1007/JHEP09(2014)086

Y. Geyer, A.E. Lipstein, L.J. Mason. Ambitwistor strings in four dimensions. Phys. Rev. Lett. 113, 081602 (2014). https://doi.org/10.1103/PhysRevLett.113.081602

A. Lipstein, V. Schomerus. Towards a worldsheet description of N = 8 supergravity. arXiv:1507.02936 [hep-th].

E. Casali, P. Tourkine. On the null origin of the ambitwistor string. JHEP 1611, 036 (2016). https://doi.org/10.1007/JHEP11(2016)036

E. Casali, Y. Herfray, P. Tourkine. The complex null string, Galilean conformal algebra and scattering equations. JHEP 1710, 164 (2017). https://doi.org/10.1007/JHEP10(2017)164

T. Adamo, E. Casali, S. Nekovar. Ambitwistor string vertex operators on curved backgrounds. JHEP 1901, 2013 (2019). https://doi.org/10.1007/JHEP01(2019)213

N. Carabine, R.A. Reid-Edwards. An alternative perspective on ambitwistor string theory. arXiv:1809.05177 [hep-th].

I. Bandos. On polarized scattering equations for superamplitudes of 11D supergravity and ambitwistor superstring. arXiv:1908.07482 [hep-th].

I.A. Bandos. D = 11 massless superparticle covariant quantization, pure spinor BRST charge and hidden symmetries. Nucl. Phys. B 796, 360 (2008). https://doi.org/10.1016/j.nuclphysb.2007.12.019

A.S. Galperin, P.S. Howe, P.K. Townsend. Twistor transform for superfields. Nucl. Phys. B 402, 531 (1993). https://doi.org/10.1016/0550-3213(93)90651-5

A. Galperin, E. Ivanov, S. Kalitsyn, V. Ogievetsky, E. Sokatchev. Unconstrained N = 2 matter, Yang-Mills and supergravity theories in harmonic superspace. Class. Quant. Grav. 1, 469 (1984). https://doi.org/10.1088/0264-9381/1/5/004

E. Sokatchev. Light cone harmonic superspace and its applications. Phys. Lett. B 169, 209 (1986). https://doi.org/10.1016/0370-2693(86)90652-0

E. Sokatchev. Harmonic superparticle. Class. Quant. Grav. 4, 237 (1987). https://doi.org/10.1088/0264-9381/4/2/007

I.A. Bandos, J.A. de Azcarraga, C. Miquel-Espanya. Superspace formulations of the (super)twistor string. JHEP 0607, 005 (2006). https://doi.org/10.1088/1126-6708/2006/07/005

I.A. Bandos, J.A. de Azcarraga, C. Miquel-Espanya. Twistor string as tensionless superstring. Fortsch. Phys. 55, 573 (2007). https://doi.org/10.1002/prop.200610340

I.A. Bandos, J.A. de Azcarraga, D.P. Sorokin. On D = 11 supertwistors, superparticle quantization and a hidden SO(16) symmetry of supergravity. In: Proceedings, 22nd Max Born Symposium on Quantum, Super and Twistors: A Conference in Honor of Jerzy Lukierski on His 70th Birthday (Wroclaw, Poland, September 27-29, 2006). Edited by Jerzy Kowalski-Glikman and Ludwik Turko. (Wroclaw Univ., 2008) [ISBN: 9788322929414].

M. Heydeman, J.H. Schwarz, C. Wen. M5-brane and D-brane scattering amplitudes. JHEP 1712, 003 (2017). https://doi.org/10.1007/JHEP12(2017)003

F. Cachazo, A. Guevara, M. Heydeman, S. Mizera, J.H. Schwarz, C. Wen. The S-matrix of 6D super Yang-Mills and maximal supergravity from rational maps. JHEP 1809, 125 (2018). https://doi.org/10.1007/JHEP09(2018)125

M. Heydeman, J.H. Schwarz, C. Wen, S.Q. Zhang. All tree amplitudes of 6D (2, 0) supergravity: Interacting tensor multiplets and the K3 moduli space. Phys. Rev. Lett. 122, 111604 (2019). https://doi.org/10.1103/PhysRevLett.122.111604

J.H. Schwarz, C. Wen. Unified formalism for 6D superamplitudes based on a symplectic grassmannian. JHEP 1908, 125 (2019). https://doi.org/10.1007/JHEP08(2019)125




How to Cite

Bandos, I. (2019). Spinor Moving Frame, Polarized Scattering Equation for 11D Supergravity, and Ambitwistor Superstring. Ukrainian Journal of Physics, 64(12), 1087. https://doi.org/10.15407/ujpe64.12.1087



Fields and elementary particles