Spinor Moving Frame, Polarized Scattering Equation for 11D Supergravity, and Ambitwistor Superstring
DOI:
https://doi.org/10.15407/ujpe64.12.1087Keywords:
supersymmetry, amplitudes, supergravity, higher dimensions, spinor moving frame, ambitwistor stringAbstract
We reveal and discuss the spinor moving frame origin of the formalism of the 11D polarized scattering equation by Geyer and Mason [21]. In particular, we use the spinor moving frame formulation of the 11D ambitwistor superstring [35] considered as a dynamical system in the 11D superspace enlarged by tensorial central charge coordinates to rigorously obtain the expression for the spinor function on a Riemann sphere and the polarized scattering equation which that obeys.
References
Z. Bern, J.J. Carrasco, L.J. Dixon, H. Johansson, R. Roiban. Amplitudes and ultraviolet behavior of N = 8 supergravity. Fortsch. Phys. 59, 561 (2011). https://doi.org/10.1002/prop.201100037
H. Elvang, Y.t. Huang. Scattering Amplitudes in Gauge Theory and Gravity (CUP, 2015) [ISBN: 9781107069251]. https://doi.org/10.1017/CBO9781107706620
N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, A.B. Goncharov, A. Postnikov, J. Trnka. Grassmannian Geometry of Scattering Amplitudes (CUP, 2015). https://doi.org/10.1017/CBO9781316091548
S. Caron-Huot, L.J. Dixon, F. Dulat, M. von Hippel, A.J. McLeod, G. Papathanasiou. Six-gluon amplitudes in planar N = 4 super-Yang-Mills theory at six and seven loops. arXiv:1903.10890 [hep-th] and refs therein.
R. Britto, F. Cachazo, B. Feng, E. Witten. Direct proof of tree-level recursion relation in Yang-Mills theory. Phys. Rev. Lett. 94, 181602 (2005). https://doi.org/10.1103/PhysRevLett.94.181602
M. Bianchi, H. Elvang, D.Z. Freedman. Generating tree amplitudes in N = 4 SYM and N = 8 SG. JHEP 0809, 063 (2008). https://doi.org/10.1088/1126-6708/2008/09/063
N. Arkani-Hamed, F. Cachazo, J. Kaplan.What is the simplest quantum field theory? JHEP 1009, 016 (2010). https://doi.org/10.1007/JHEP09(2010)016
A. Brandhuber, P. Heslop, G. Travaglini. A note on dual superconformal symmetry of the N = 4 super Yang-Mills S-matrix. Phys. Rev. D 78, 125005 (2008). https://doi.org/10.1103/PhysRevD.78.125005
L.J. Mason, D. Skinner. Dual superconformal invariance, momentum twistors and grassmannians. JHEP 0911, 045 (2009). https://doi.org/10.1088/1126-6708/2009/11/045
P. Heslop, A.E. Lipstein. On-shell diagrams for N = 8 supergravity amplitudes. JHEP 1606, 069 (2016). https://doi.org/10.1007/JHEP06(2016)069
E. Herrmann, J. Trnka. Gravity on-shell diagrams. JHEP 1611, 136 (2016). https://doi.org/10.1007/JHEP11(2016)136
C. Cheung, D. O'Connell. Amplitudes and spinor-helicity in six dimensions. JHEP 0907, 075 (2009). https://doi.org/10.1088/1126-6708/2009/07/075
S. Caron-Huot, D. O'Connell. Spinor helicity and dual conformal symmetry in ten dimensions. JHEP 1108, 014 (2011). https://doi.org/10.1007/JHEP08(2011)014
R.H. Boels, D. O'Connell. Simple superamplitudes in higher dimensions. JHEP 1206, 163 (2012). https://doi.org/10.1007/JHEP06(2012)163
R.H. Boels. Maximal R-symmetry violating amplitudes in type IIB superstring theory. Phys. Rev. Lett. 109, 081602 (2012). https://doi.org/10.1103/PhysRevLett.109.081602
Y. Wang, X. Yin. Constraining higher derivative supergravity with scattering amplitudes. Phys. Rev. D 92 (4), 041701 (2015). https://doi.org/10.1103/PhysRevD.92.041701
Y. Wang, X. Yin. Supervertices and non-renormalization conditions in maximal supergravity theories. arXiv:1505.05861 [hep-th].
I. Bandos. Britto-Cachazo-Feng-Witten-type recurrent relations for tree amplitudes of D=11 supergravity. Phys. Rev. Lett. 118, 031601 (2017). https://doi.org/10.1103/PhysRevLett.118.031601
I. Bandos. An analytic superfield formalism for tree superamplitudes in D = 10 and D = 11. JHEP 1805, 103 (2018). https://doi.org/10.1007/JHEP05(2018)103
I. Bandos. Spinor frame formalism for amplitudes and constrained superamplitudes of 10D SYM and 11D supergravity. JHEP 1811, 017 (2018). https://doi.org/10.1007/JHEP11(2018)017
Y. Geyer, L. Mason. The M-theory S-matrix. arXiv:1901.00134 [hep-th].
D.V. Uvarov. Spinor description of D = 5 massless low-spin gauge fields. Class. Quant. Grav. 33, 135010 (2016). https://doi.org/10.1088/0264-9381/33/13/135010
T. Adamo, D. Skinner, J. Williams. Twistor methods for AdS5. JHEP 1608, 167 (2016). https://doi.org/10.1007/JHEP08(2016)167
D.V. Uvarov. Multitwistor mechanics of massless superparticle on AdS5 × S5 superbackground. arXiv:1907.13613 [hep-th].
B. Nagaraj, D. Ponomarev. Spinor-helicity formalism for massless fields in AdS4. Phys. Rev. Lett. 122, 101602 (2019). https://doi.org/10.1103/PhysRevLett.122.101602
F. Cachazo, S. He, E.Y. Yuan. Scattering of massless particles in arbitrary dimensions. Phys. Rev. Lett. 113, 171601 (2014). https://doi.org/10.1103/PhysRevLett.113.171601
F. Cachazo, S. He, E.Y. Yuan. Scattering equations and matrices: From Einstein to Yang-Mills, DBI and NLSM. JHEP 1507, 149 (2015). https://doi.org/10.1007/JHEP07(2015)149
D.J. Gross, P.F. Mende. The high-energy behavior of string scattering amplitudes. Phys. Lett. B 197, 129 (1987).
https://doi.org/10.1016/0370-2693(87)90355-8
D.J. Gross, P.F. Mende. String theory beyond the Planck scale. Nucl. Phys. B 303, 407 (1988). https://doi.org/10.1016/0550-3213(88)90390-2
D.J. Gross, J.L. Manes. The high-energy behavior of open string scattering. Nucl. Phys. B 326, 73 (1989). https://doi.org/10.1016/0550-3213(89)90435-5
F. Cachazo, N. Early, A. Guevara, S. Mizera. Scattering equations: From projective spaces to tropical grassmannians. JHEP 1906, 039 (2019). https://doi.org/10.1007/JHEP06(2019)039
Y. Geyer, L. Mason. Polarized scattering equations for 6D superamplitudes. Phys. Rev. Lett. 122, 101601 (2019). https://doi.org/10.1103/PhysRevLett.122.101601
L. Mason, D. Skinner. Ambitwistor strings and the scattering equations. JHEP 1407, 048 (2014). https://doi.org/10.1007/JHEP07(2014)048
T. Adamo, E. Casali, D. Skinner. Ambitwistor strings and the scattering equations at one loop. JHEP 1404, 104 (2014). https://doi.org/10.1007/JHEP04(2014)104
I. Bandos. Twistor/ambitwistor strings and null-superstrings in spacetime of D = 4, 10 and 11 dimensions. JHEP 1409, 086 (2014). https://doi.org/10.1007/JHEP09(2014)086
Y. Geyer, A.E. Lipstein, L.J. Mason. Ambitwistor strings in four dimensions. Phys. Rev. Lett. 113, 081602 (2014). https://doi.org/10.1103/PhysRevLett.113.081602
A. Lipstein, V. Schomerus. Towards a worldsheet description of N = 8 supergravity. arXiv:1507.02936 [hep-th].
E. Casali, P. Tourkine. On the null origin of the ambitwistor string. JHEP 1611, 036 (2016). https://doi.org/10.1007/JHEP11(2016)036
E. Casali, Y. Herfray, P. Tourkine. The complex null string, Galilean conformal algebra and scattering equations. JHEP 1710, 164 (2017). https://doi.org/10.1007/JHEP10(2017)164
T. Adamo, E. Casali, S. Nekovar. Ambitwistor string vertex operators on curved backgrounds. JHEP 1901, 2013 (2019). https://doi.org/10.1007/JHEP01(2019)213
N. Carabine, R.A. Reid-Edwards. An alternative perspective on ambitwistor string theory. arXiv:1809.05177 [hep-th].
I. Bandos. On polarized scattering equations for superamplitudes of 11D supergravity and ambitwistor superstring. arXiv:1908.07482 [hep-th].
I.A. Bandos. D = 11 massless superparticle covariant quantization, pure spinor BRST charge and hidden symmetries. Nucl. Phys. B 796, 360 (2008). https://doi.org/10.1016/j.nuclphysb.2007.12.019
A.S. Galperin, P.S. Howe, P.K. Townsend. Twistor transform for superfields. Nucl. Phys. B 402, 531 (1993). https://doi.org/10.1016/0550-3213(93)90651-5
A. Galperin, E. Ivanov, S. Kalitsyn, V. Ogievetsky, E. Sokatchev. Unconstrained N = 2 matter, Yang-Mills and supergravity theories in harmonic superspace. Class. Quant. Grav. 1, 469 (1984). https://doi.org/10.1088/0264-9381/1/5/004
E. Sokatchev. Light cone harmonic superspace and its applications. Phys. Lett. B 169, 209 (1986). https://doi.org/10.1016/0370-2693(86)90652-0
E. Sokatchev. Harmonic superparticle. Class. Quant. Grav. 4, 237 (1987). https://doi.org/10.1088/0264-9381/4/2/007
I.A. Bandos, J.A. de Azcarraga, C. Miquel-Espanya. Superspace formulations of the (super)twistor string. JHEP 0607, 005 (2006). https://doi.org/10.1088/1126-6708/2006/07/005
I.A. Bandos, J.A. de Azcarraga, C. Miquel-Espanya. Twistor string as tensionless superstring. Fortsch. Phys. 55, 573 (2007). https://doi.org/10.1002/prop.200610340
I.A. Bandos, J.A. de Azcarraga, D.P. Sorokin. On D = 11 supertwistors, superparticle quantization and a hidden SO(16) symmetry of supergravity. In: Proceedings, 22nd Max Born Symposium on Quantum, Super and Twistors: A Conference in Honor of Jerzy Lukierski on His 70th Birthday (Wroclaw, Poland, September 27-29, 2006). Edited by Jerzy Kowalski-Glikman and Ludwik Turko. (Wroclaw Univ., 2008) [ISBN: 9788322929414].
M. Heydeman, J.H. Schwarz, C. Wen. M5-brane and D-brane scattering amplitudes. JHEP 1712, 003 (2017). https://doi.org/10.1007/JHEP12(2017)003
F. Cachazo, A. Guevara, M. Heydeman, S. Mizera, J.H. Schwarz, C. Wen. The S-matrix of 6D super Yang-Mills and maximal supergravity from rational maps. JHEP 1809, 125 (2018). https://doi.org/10.1007/JHEP09(2018)125
M. Heydeman, J.H. Schwarz, C. Wen, S.Q. Zhang. All tree amplitudes of 6D (2, 0) supergravity: Interacting tensor multiplets and the K3 moduli space. Phys. Rev. Lett. 122, 111604 (2019). https://doi.org/10.1103/PhysRevLett.122.111604
J.H. Schwarz, C. Wen. Unified formalism for 6D superamplitudes based on a symplectic grassmannian. JHEP 1908, 125 (2019). https://doi.org/10.1007/JHEP08(2019)125
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.