Formation of Nanocrystalline Silicon in Tin-Doped Amorphous Silicon Films

  • R. M. Rudenko Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • O. O. Voitsihovska Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • V. V. Voitovych Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • M. M. Kras’ko Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • A. G. Kolosyuk Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • V. Yu. Povarchuk Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • M. P. Rudenko Mykola Gogol State University of Nizhyn
  • L. M. Knorozok Mykola Gogol State University of Nizhyn
Keywords: nanocrystalline silicon, metal-induced crystallization, tin

Abstract

The process of crystalline silicon phase formation in tin-doped amorphous silicon (a-SiSn) films has been studied. The inclusions of metallic tin are shown to play a key role in the crystallization of researched a-SiSn specimens with Sn contents of 1–10 at% at temperatures of 300–500 ∘C. The crystallization process can conditionally be divided into two stages. At the first stage, the formation of metallic tin inclusions occurs in the bulk of as-precipitated films owing to the diffusion of tin atoms in the amorphous silicon matrix. At the second stage, the formation of the nanocrystalline phase of silicon occurs as a result of the motion of silicon atoms from the amorphous phase to the crystalline one through the formed metallic tin inclusions. The presence of the latter ensures the formation of silicon crystallites at a much lower temperature than the solid-phase recrystallization temperature (about 750 ∘C). A possibility for a relation to exist between the sizes of growing silicon nanocrystallites and metallic tin inclusions favoring the formation of nanocrystallites has been analyzed.

References

D. Kovalev, H. Heckler, G. Polisski, J. Diener, F.Koch. Optical properties of silicon nanocrystals. Opt. Mater. 17, 35 (2001). https://doi.org/10.1016/S0925-3467(01)00017-9

V.V.Voitovych, R.M.Rudenko, A.G.Kolosiuk, M.M.Krasko, V.O. Juhimchuk, M.V. Voitovych, S.S. Ponomarov, A.M. Kraitchinskii, V.Yu. Povarchuk, V.A. Makara. Effect of tin on the processes of silicon-nanocrystal formation in amorphous SiOx thin-film matrices. Semiconductors 48, 73 (2014). https://doi.org/10.1134/S1063782614010242

V.V. Voitovych, R.M. Rudenko, V.O. Yuchymchuk, M.V. Voitovych, M.M. Krasko, A.G. Kolosiuk, V.Yu. Povarchuk, I.M. Khachevich, M.P. Rudenko. Effect of tin on structural transformations in the thin-film silicon suboxide matrix, Ukr. J. Phys. 61, 980 (2016).

V. Svrcek, A. Slaoui, J.-C. Muller. Silicon nanocrystals as light converter for solar cells. Thin Solid Films 451-452, 384 (2004). https://doi.org/10.1016/j.tsf.2003.10.133

A. Kherodia, A.K. Panchal. Analysis of thickness-depedent optical parameters of a-Si:H/nc-Si:H multilayer thin films. Mater. Renew. Sustain. Energy 6, 23 (2017). https://doi.org/10.1007/s40243-017-0107-3

A. Shan, E. Vallat-Shauvain, P. Torres, J. Meier, U. Kroll, C. Hof, C. Droz, M. Goerlitzer, N. Wyrsch, M. Vanechek. Intrinsic microcrystalline silicon (мc-Si:H) deposited by VHF-GD (very high frequency-glow discharge): A new material for photovoltaics and optoelectronics. Mater. Sci. Eng. 69-70, 219 (2000). https://doi.org/10.1016/S0921-5107(99)00299-8

V.V. Voitovych, V.B. Neimash, N.N. Krasko, A.G. Kolosiuk, V.Yu. Povarchuk, R.M. Rudenko, V.A. Makara, R.V. Petrunya, V.O. Juhimchuk, V.V. Strelchuk. The effect of Sn impurity on the optical and structural properties of thin silicon films, Semiconductors 45, .1281 (2010). https://doi.org/10.1134/S1063782611100253

R.M. Rudenko, V.V. Voitovych, M.M. Kras'ko, A.G. Kolosyuk, A.M. Kraichynskyi, V.O. Yukhymchuk, V.A. Makara. Influence of high temperature annealing on the structure and the intrinsic absorption edge of thin-film silicon doped with tin. Ukr. J. Phys. 58, 769 (2013).

R.M.Rudenko, M.M.Kras'ko, V.V.Voitovych, A.G.Kolosyuk, V.YU. Povarchuk, A.M. Kraichynskyi, V.O. Yukhymchuck, V.YA. Bratus', M.V. Voitovych, I.A. Zaloilo. Behavior of hydrogen during crystallization of thin silicon films doped with tin. Ukr. J. Phys. 58, 1165 (2013).

T.J. Konno, R. Sinclair. Crystallization of silicon in aluminium/amorphous-silicon multilayers, Phil. Mag. B 66, 749 (1992). https://doi.org/10.1080/13642819208220126

O. Nast, S.R. Wenham. Elucidation of the layer exchange mechanism in the formation of polycrystalline silicon by aluminium-induced crystallization. J. Appl. Phys. 88, 124 (2000). https://doi.org/10.1063/1.373632

M. Jeon, C. Jeong, K. Kamisako. Tin induced crystallisation of hydrogenated amorphous silicon thin films. Mater. Sci. Technol. 26, 875 (2010). https://doi.org/10.1179/026708309X12454008169500

A. Sarikov. Metal induced crystallization mechanism of the metal catalyzed growth of silicon wire-like crystals. Appl. Phys. Lett. 99, 143102 (2011). https://doi.org/10.1063/1.3644981

Jae-Hyun Shim, Nam-Hee Cho. Formation of nanocrystallites in the nc-Si films by co-sputtering aluminium and silicon. Solid State Phenom. 124-126, 495 (2007). https://doi.org/10.4028/www.scientific.net/SSP.124-126.495

Fuyu Lin, Miltiadis. Crystallization of tin-implanted amorphous silicon thin films. Mat. Res. Soc. Symp. Proc. 279, 553 (1993). https://doi.org/10.1557/PROC-279-553

Jong-Hyeok Park, M. Kurosawa, N. Kawabata, M. Miyao, T. Sadoh. Au-induced low-temperature (∼250∘C) crystallization of Si on insulator through layer-exchange process, Electrochem. Sol.-St. Lett. 14, H232 (2011). https://doi.org/10.1149/1.3562275

R.W. Olesinski, G.J. Abbaschian. The Si-Sn (silicon-tin) system. Bull. Alloy Phase Diagr. 5, 273 (1984). https://doi.org/10.1007/BF02868552

P. Mishra, K.P. Jain. First- and second-order Raman scattering in nanocrystalline silicon. Phys. Rev. B 64, 073304 (2001). https://doi.org/10.1103/PhysRevB.64.073304

H. Campbell, P.M. Fauchet. The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors, Solid State Commun. 58, 739 (1986). https://doi.org/10.1016/0038-1098(86)90513-2

S.V. Gajsler, O.I. Semenova, R.G. Sharafutdinov, B.A. Kolesov. Analysis of Raman spectra of amorphous-nanocrystalline silicon films, Phys. Solid State 46, 1528 (2004). https://doi.org/10.1134/1.1788789

G.L. Olson, J.A. Roth. Kinetics of solid phase crystallization in amorphous silicon, Mater. Sci. Rep. 3, 1 (1988). https://doi.org/10.1016/S0920-2307(88)80005-7

G. Dalba, P. Fornasini, R. Grisenti, F. Rocca, D. Comedi, I. Chambouleyron. Local coordination of Ga impurity in hydrogenated amorphous germanium studied by extended x-ray absorption fine-structure spectroscopy. Appl. Phys. Lett. 74, 281 (1999). https://doi.org/10.1063/1.122999

Linwei Yu, B. O'Donnell, P.-J. Alet, S. Conesa-Boj, F. Peir'o, J. Arbiol, Pere Roca i Cabarrocas. Plasma-enhanced low temperature growth of silicon nanowires and hierarchical structures by using tin and indium catalysts. Nanotechnology 20, 225604 (2009). https://doi.org/10.1088/0957-4484/20/22/225604

A. Hiraki. Low temperature reactions at Si/metal interfaces: What is going on at the interfaces? Surf. Sci. Rep. 3, 357 (1984). https://doi.org/10.1016/0167-5729(84)90003-7

W. Knaepen, S. Gaudet, C. Detavernier, R.L. Van Meirhaeghe, J.J. Sweet, C. Lavoie. In situ x-ray diffraction study of metal induced crystallization of amorphous germanium. J. Appl. Phys. 105, 083532 (2009). https://doi.org/10.1063/1.3110722

G. Neumann, C. Tuijn. Self-Diffusion and Impurity Diffusion in Pure Metals: Handbook of Experimental Data (Elsevier, 2009) [ISBN: 978-1-85617-511-1]. https://doi.org/10.1016/S1470-1804(08)00006-0

S. Sharafat, N. Ghoniem. Summary of thermo-physical properties of sn, and compounds of Sn-H, Sn-O, Sn-C, Sn-Li, and Sn-Si and comparison of properties of Sn, Sn-Li, Li, and Pb-Li. Report SS/NG: UCLA-UCMEP-00-31 (UCLA, 2000).

P. Kringhøj, R.G. Elliman. Diffusion of ion implanted Sn in Si, Si1−xGex, and Ge. Appl. Phys. Lett. 65, 324 (1994). https://doi.org/10.1063/1.112360

R.P. Thornton, R.G. Elliman, J.S. Williams. Amorphousto-polycrystalline phase transformations in Sn-implanted silicon. J. Mater. Res. 5, 1003 (1990). https://doi.org/10.1557/JMR.1990.1003

G.S. Kulikov, K.Kh. Khodzhaev. Effect of doping with phosphorus on tin diffusion in a-Si: H films. Fiz. Tekhn. Poluprovodn. 29, 961 (1995) (in Russian).

S. Coffa, L. Calcagno, S.U. Campisano, G. Calleri, G. Ferla. Diffusion of ion-implanted gold in p-type silicon. J. Appl. Phys. 64, 6291 (1988). https://doi.org/10.1063/1.342087

J. Hirvonen, A. Anttila. Self-diffusion in silicon as probed by the (p, y) resonance broadening method. Appl. Phys. Lett. 35, 703 (1979). https://doi.org/10.1063/1.91261

R.B. Iverson, R. Reif. Recrystallization of amorphized polycrystalline silicon films on SiO2: Temperature dependence of the crystallization parameters. J. Appl. Phys. 62, 1675 (1987). https://doi.org/10.1063/1.339591

F. Strauß, L. D¨orrer, Th. Geue, J. Stahn, A. Koutsioubas, S. Mattauch, H. Schmidt. Self-diffusion in amorphous silicon. Phys. Rev. Lett. 116, 025901 (2016). https://doi.org/10.1103/PhysRevLett.116.025901

U. K¨oster. Crystallization of amorphous silicon films. Phys. Stat. Solidi A 48, 313 (1978). https://doi.org/10.1002/pssa.2210480207

E. Nygren, A.P. Pogany, K.T. Short, J.S. Williams, R.G. Elliman, J.M. Poate. Impurity-stimulated crystallization and diffusion in amorphous silicon. Appl. Phys. Lett. 52, 439 (1988). https://doi.org/10.1063/1.99436

E.P. Donovan, F. Spaepen, D. Turnbull, J.M. Poate, D.C. Jacobson. Heat of crystallization and melting point of amorphous silicon. Appl. Phys. Lett. 42, 698 (1983). https://doi.org/10.1063/1.94077

M.F. Fyhn, J. Chevallier, A.N. Larsen. a-Sn and b-Sn precipitates in annealed epitaxial Si0.95Sn0.05. Phys. Rev. B 60, 5770 (1999). https://doi.org/10.1103/PhysRevB.60.5770

T.H. Yeh, S.M. Hu, R.H. Kastl. Diffusion of tin into silicon. J. Appl. Phys. 39, 4266 (1968). https://doi.org/10.1063/1.1656959

J. K¨uhnle, R.B. Bergmann, J.H. Werner. Role of critical size of nuclei for liquid-phase epitaxy on polycrystalline Si films, J. Cryst. Growth 173, 62 (1997). https://doi.org/10.1016/S0022-0248(96)00783-X

R. Sinclair, J. Morgiel, A.S. Kirtikar, I.-W.Wu, A. Chiang. Direct observation of crystallization in silicon by in situ high-resolution electron microscopy. Ultramicroscopy 51, 41 (1993). https://doi.org/10.1016/0304-3991(93)90134-J

C.H. Ma, R.A. Swalin. Self diffusion in liquid tin. J. Chem. Phys. 36, 3014 (1962). https://doi.org/10.1063/1.1732419

H. Qinghengt, E.S. Yang, H. Izmirliyan. Diffusivity and growth rate of silicon in solid-phase epitaxy with an aluminum medium. Solid-State Electron. 25, 1187 (1982). https://doi.org/10.1016/0038-1101(82)90078-8

Published
2020-03-26
How to Cite
Rudenko, R., Voitsihovska, O., Voitovych, V., Kras’ko, M., Kolosyuk, A., Povarchuk, V., Rudenko, M., & Knorozok, L. (2020). Formation of Nanocrystalline Silicon in Tin-Doped Amorphous Silicon Films. Ukrainian Journal of Physics, 65(3), 236. https://doi.org/10.15407/ujpe65.3.236
Section
Semiconductors and dielectrics

Most read articles by the same author(s)