The Effect of Isovalent Cation Substitution on Mechanical Properties of (CuxAg1–x)7SiS5I Superionic Mixed Single Crystals

Authors

  • V. S. Bilanych Uzhhorod National University
  • K. V. Skubenych Uzhhorod National University
  • M. I. Babilya Uzhhorod National University
  • A. I. Pogodin Uzhhorod National University
  • I. P. Studenyak Uzhhorod National University

DOI:

https://doi.org/10.15407/ujpe65.5.453

Keywords:

mixed crystals, mechanical properties, cation substitution, microhardness, compositional dependence

Abstract

(CuxAg1−x)7SiS5I mixed crystals were grown by the Bridgman–Stockbarger method. The microhardness measurements are carried out at room temperature using a Vickers indenter. The compositional dependence of the microhardness is studied. The dependence of the microhardness on the depth of imprint is analyzed in the model of geometrically necessary dislocations. The indentation size effect is observed. It is established that the microhardness of (CuxAg1−x)7SiS5I mixed crystals decreases at the substitution of Cu atoms by Ag atoms.

References

T. Nilges, A. Pfitzner. A structural differentiation of quaternary copper argirodites: Structure - property relations of high temperature ion conductors. Z. Kristallogr. 220, 281 (2005). https://doi.org/10.1524/zkri.220.2.281.59142

M. Laqibi, B. Cros, S. Peytavin, M. Ribes. New silver superionic conductors Ag7XY5Z (X=Si, Ge, Sn; Y=S, Se; Z=Cl, Br, I) - synthesis and electrical studies. Solid State Ionics 23, 21 (1987). https://doi.org/10.1016/0167-2738(87)90077-4

I.P. Studenyak, M. Kranjˇcec, V.V. Bilanchuk, A. Dziaugys, J. Banys, A.F. Orliukas. Influence of cation substitution on electrical conductivity and optical absorption edge in Cu7(Ge1−xSix)S5I mixed crystals. Semiconductor Physics, Quantum Electronics & Optoelectronics 15, 227 (2012). https://doi.org/10.15407/spqeo15.03.227

I.P. Studenyak, M. Kranjcec, Gy.S. Kovacs, I.D. Desnica-Frankovic, V.V. Panko, V.Yu. Slivka. The excitonic processes and Urbach rule in Cu6P(S1−xSex)5I crystals in the sulfur-rich region. Mat. Res. Bull. 36, 123 (2001). https://doi.org/10.1016/S0025-5408(01)00508-6

I.P. Studenyak, M. Kranjcec, M.V. Kurik. Urbach rule and disordering processes in Cu6P(S1−xSex)5Br1−yIy superionic conductors. J. Phys. Chem. Solids 67, 807 (2006). https://doi.org/10.1016/j.jpcs.2005.10.184

I.P. Studenyak, A.I. Pogodin, O.P. Kokhan, V. Kavaliuke, T. Salkus, A. Kezionis, A.F. Orliukas. Crystal growth, structural and electrical properties of (Cu1−xAgx)7GeS5I superionic solid solutions. Solid State Ionics 329, 119 (2019). https://doi.org/10.1016/j.ssi.2018.11.020

A.I. Pogodin, M.J. Filep, M.M. Luchynets, O.O. Yamkovy, O.P. Kokhan, I.P. Studenyak. Synthesis, growth and structural studies of Cu7SiS5I, Ag7SiS5I single crystals and mixed crystals on their base. Sci. Herald of Uzhh. Univ. Ser. Phys. 43, 9 (2018).

P.R. Rebou¸cas Filho, T.S. Cavalcante, V.H.C. Albuquerque, J.M.R.S. Tavares. Brinell and Vickers hardness measurement using image processing and analysis techniques. J. Test. Evaluat. 38, 1 (2010). https://doi.org/10.1520/JTE102220

F.R.N. Nabarro, S. Shrivastava, S.B. Luyckx. The size effect in microindentation. Phil. Magazine 86, 4173 (2006). https://doi.org/10.1080/14786430600577910

M.L. Trunov, V.S. Bilanych, S.N. Dub. Nanoindentation study of the time-dependent mechanical behavior of materials. Zh. Tekhn. Fiz. 77, 56 (2007).

K.J. Johnson. Contact Mechanics (Cambridge Univ. Press, 1985). https://doi.org/10.1017/CBO9781139171731

Yu.I. Golovin. Nanoindentation and Its Possibilities (Mashinostroenie, 2009).

Yu.I. Golovin. Nanoindentation and mechanical properties of solids in submicrovolumes, thin near-surface layers and films: A review. Phys. Solid State 50, 2205 (2008). https://doi.org/10.1134/S1063783408120019

M.F. Ashby. The deformation of plastically non-homogeneous materials. Philos. Mag. 21, 399 (1970). https://doi.org/10.1080/14786437008238426

H. Gao, Y. Huang, W.D. Nix, J.W. Hutchinson. Mechanism-based strain gradient plasticity-I. Theory. J. Mech. Phys. Solids 47, 1239 (1999). https://doi.org/10.1016/S0022-5096(98)00103-3

W.D. Nix, H. Gao. Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411 (1998). https://doi.org/10.1016/S0022-5096(97)00086-0

M.R. Begley, J.W. Hutchinson. The mechanics of size-dependent indentation. J. Mech. Phys. Solids 35, 2049 (1998). https://doi.org/10.1016/S0022-5096(98)00018-0

Z. Zong, J. Lou, O O. Adewoye, A.A. Elmustafa, F. Hammad, W.O. Soboyejo. Indentation size effects in the nano and microhardness of fcc single crystal metals. Mater. Manufact Process. 22, 228 (2007). https://doi.org/10.1080/10426910601063410

L.M. Brown. Transition from laminar to rotational motion in plasticity. Phil. Trans. R. Soc. Lond. A 355, 1979 (1997). https://doi.org/10.1098/rsta.1997.0100

L.G. Buhayenko, S.Р. Ryabukh, Р.L. Buhayenko. Approximately full system of average ionic crystallographic radii and its employment for the determination of ionization potentials. Herald of Moscow Univ.: Ser. Chem. 6, 363 (2008). https://doi.org/10.3103/S0027131408060011

S.V. Lubenets, A.V. Rusakova, L.S. Fomenko, V.A. Moskalenko. Micromechanical properties of single crystals and polycrystals of pure a-titanium: Anisotropy of microhardness, size effect, effect of the temperature (77-300 K). Low Temper. Phys. 44, 73 (2018). https://doi.org/10.1063/1.5020901

Downloads

Published

2020-05-11

How to Cite

Bilanych, V. S., Skubenych, K. V., Babilya, M. I., Pogodin, A. I., & Studenyak, I. P. (2020). The Effect of Isovalent Cation Substitution on Mechanical Properties of (CuxAg1–x)7SiS5I Superionic Mixed Single Crystals. Ukrainian Journal of Physics, 65(5), 453. https://doi.org/10.15407/ujpe65.5.453

Issue

Section

Semiconductors and dielectrics

Most read articles by the same author(s)