Microwave Response of Nanostructured High-Tc Superconductor Thin Films

Authors

  • P. A. Borisenko Taras Shevchenko National University, Faculty of Radio Physics, Electronics and Computer Systems
  • A. O. Pokusinskii Taras Shevchenko National University, Faculty of Radio Physics, Electronics and Computer Systems
  • A. L. Kasatkin Institute of Metal Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe64.10.969

Keywords:

high-Tc superconductor, nanoparticles, nanorods, radiation defects, microwave frequency, surface resistance, Abrikosov vortices

Abstract

A model for the microwave response of a nanostructured high-Tc superconductor (HTS) film, with implanted nanoparticles and nanorods of a dielectric material or point-like and columnar irradiation defects with a nano-sized cross-section is developed. In this case, the microwave surface resistance Rs(T,H,ω) is calculated both for the Meissner and mixed states of a superconductor film in an applied dc magnetic field. The obtained results indicate that the implantation of dielectric nanoparticles or point-like radiation defects can significantly improve superconductor characteristics at microwave frequencies. Namely, these nano-sized structural defects can decrease the surface resistance in the Meissner state and eliminate the oscillations of Abrikosov vortices and the related microwave energy losses, thus decreasing the contribution of Abrikosov vortices to the Rs value in the mixed state of a HTS film.

References

B. Maiorov, S.A. Baily, H. Zhou, O. Ugurlu, J.A. Kennison, P.C. Dowden, T.G. Holesinger, S.R. Foltyn, L. Civale. Synergetic combination of different types of defect to optimize pinning landscape using BaZrO3-doped YBa2Cu3O7. Nature Mater. 8, 398 (2009). https://doi.org/10.1038/nmat2408

T.G. Holesinger, M.D. Feldmann, B. Maiorov, L. Civale, J.A. Kennison, Y.J. Coulter, P.D. Dowden, J.F. Baca, P.H. Tobash, E.D. Bauer, K.R. Marken. Nanorod self-assembly in high Jc YBa2Cu3O7?x films with Ru-based double perovskites. Materials 4, 2042 (2011). https://doi.org/10.3390/ma4112042

S.H. Wee, Y.L. Zuev, C. Cantoni, A. Goyal. Engineering nanocolumnar defect configurations for optimized vortex pinning in high temperature superconducting nanocomposite wires. Sci. Rep. 3, 2310, 1 (2013). https://doi.org/10.1038/srep02310

T. Horide, K. Otsubo, R. Kita, N. Matsukida, M. Ishimaru, S. Awaji, K. Matsumoto. Strong c-axis correlated pinning and hybrid pinning in YBa2Cu3O7?x films containing BaHfO3 nanorods and stacking faults. Supercond. Sci. Technol. 30, 074009 (2017). https://doi.org/10.1088/1361-6668/aa70d3

V.L. Svetchnikov, V.S. Flis, A.A. Kalenyuk, A.L. Kasatkin, A.I. Rebikov, V.O. Moskaliuk, C.G. Tretiatchenko, V.M. Pan. Nanotechnology as a way to overcome the rapid Jc fall with HTS film thickness. J. Phys.: Conf. Ser. 234, 012041 (2010). https://doi.org/10.1088/1742-6596/234/1/012041

V.I. Matsui, V.S. Flis, V.O. Moskaliuk, A.L. Kasatkin, N.A. Skoryk, V.L. Svechnikov. Current-carrying abilities of nano-structured HTS thin films. J. Nanosci. Nanoeng. 1, 38 (2015).

L. Civale. Vortex pinning and creep in high-temperature superconductors with columnar defects. Supercond. Sci. Technol. 10, A11 (1997). https://doi.org/10.1088/0953-2048/10/7A/003

R. Biswal, J. John, P. Mallick, B.N. Dash, P.K. Kulriya, D.K. Avasthi, D. Kanjilal, D. Behera, T. Mohanty, P. Raychaudhuri, N.C. Mishra. 200 MeV silver ion irradiation induced structural modification in YBa2Cu3O7?y thin films at 89 K: An in situ x-ray diffraction study. J. Appl. Phys. 106, 053912 (2009). https://doi.org/10.1063/1.3212537

F. Massee, P.O. Sprau, Y.-L. Wang, J.C.S. Davis, G. Ghigo, G. Gu, W.-K. Kwok. Imaging atomic-scale effects of high-energy ion irradiation on superconductivity and vortex pinning in Fe(Se, Te). Sci. Adv. 1, e1500033 (2015). https://doi.org/10.1126/sciadv.1500033

J. Wosik, L.-M. Xie, J. Mazierska, R. Grabovickic. Influence of columnar defects on surface resistance of YBa2Cu3Ox superconducting thin films; nonlinear effects. Appl. Phys. Lett. 75, 1781 (1999). https://doi.org/10.1063/1.124818

R. Gerbaldo, G. Ghigo, L. Gozzelino, F. Laviano, A. Amato, A. Rovelli, R. Cherubini. Nanostructuring superconductors by ion beams: A path towards materials engineering, multidisciplinary applications of nuclear physics with ion beams. AIP Conf. Proc. 1530, 95 (2013). https://doi.org/10.1063/1.4812910

R. Woerdenweber, P. Lahl, J. Einfeld. Improvement of the microwave properties of Y-Ba-Cu-O films with artificial defects. IEEE Trans. Appl. Supercond. 11, 2812 (2001). https://doi.org/10.1109/77.919648

J.R. Powell, A. Porch, A.P. Kharel, M.J. Lancaster, R.G. Humphreys, F.Wellhofer, C.E. Gough. The nonlinear surface impedance of YBa2Cu3O7?б thin films in zero and large applied fields. J. Appl. Phys. 86, 2137 (1999). https://doi.org/10.1063/1.371021

N. Pompeo, R. Rogai, A. Augieri, V. Galluzzi, G. Celentano, E. Silva. Reduction in the field-dependent microwave surface resistance in YBa2Cu3O7?б with submicrometric BaZrO3 inclusions as a function of BaZrO3 concentration. J. Appl. Phys. 105, 013927 (2009). https://doi.org/10.1063/1.3056179

S. Sato, T. Honma, S. Takahashi, K. Sato, M. Watanabe, K. Ichikawa, K. Takeda, K. Nakagawa, A. Saito, S. Ohshima. Introducing Artificial Pinning Centers Into YBCO Thin Films to Improve Surface Resistance in a DC Magnetic Field. IEEE Trans. Appl. Supercond. 23, 7200404 (2013). https://doi.org/10.1109/TASC.2012.2233849

I. Vendik. Phenomenological model of the microwave surface impedance of high-Tc superconducting films. Supercond. Sci. Technol. 13, 974 (2000). https://doi.org/10.1088/0953-2048/13/7/312

M. Hein, T. Kaiser, G. Muller. Surface resistance of epitaxial YBa2Cu3O7?x films on various substrates: Effects of pair condensation and quasiparticle scattering. Phys. Rev. B 61, 640 (2000). https://doi.org/10.1103/PhysRevB.61.640

H.J. Fink, M.R. Trunin. Anisotropic microwave resistance of YBa2Cu3O6.95 and the modified two-fluid model. Phys. Rev. B 62, 3046 (2000). https://doi.org/10.1103/PhysRevB.62.3046

M. Golosovsky, M. Tsindlekht, D. Davidov. High-frequency vortex dynamics in YBa2Cu3O7. Supercond. Sci. Technol. 9, 1 (1996). https://doi.org/10.1088/0953-2048/9/1/001

E.H. Brandt. Large range of validity of linear elasticity of the vortex lattice in high-Tc superconductors. Phys. Rev. Lett. 69, 1105 (1992). https://doi.org/10.1103/PhysRevLett.69.1105

E.H. Brandt. Penetration of magnetic ac fields into type-II superconductors. Phys. Rev. Lett. 67, 2219 (1991). https://doi.org/10.1103/PhysRevLett.67.2219

M.W. Coffey, J.R. Clem. Unified theory of effects of vortex pinning and flux creep upon the rf surface impedance of type-II superconductors. Phys. Rev. Lett. 67, 2219 (1991). https://doi.org/10.1103/PhysRevLett.67.386

M.W. Coffey, J.R. Clem. Theory of high-frequency linear response of isotropic type-II superconductors in the mixed state. Phys. Rev. B 46, 11757 (1992). https://doi.org/10.1103/PhysRevB.46.11757

J.I. Gittleman, B. Rosenblum. Radio-frequency resistance in the mixed state for subcritical currents. Phys. Rev. Lett. 16, 734 (1966). https://doi.org/10.1103/PhysRevLett.16.734

N. Klein. High-frequency applications of high-temperature superconductor thin films. Rep. Prog. Phys. 65, 1387 (2002). https://doi.org/10.1088/0034-4885/65/10/201

A. Gurevich. Theory of RF superconductivity for resonant cavities. Supercond. Sci. Technol. 30, 034004 (2017). https://doi.org/10.1088/1361-6668/30/3/034004

Li Chunguang, Wang Xu, Wang Jia, Sun Liang, He Yusheng. Progress on applications of high-temperature superconducting microwave filters. Supercond. Sci. Technol. 30, 073001 (2017). https://doi.org/10.1088/1361-6668/aa69f1

G.A. Melkov, A.L. Kasatkin, V.Yu. Malyshev. The surface impedance of epitaxial HTSC films in the mixed state. Low Temp. Phys. 20, 868 (1994).

G.A. Melkov, V.Yu. Malyshev, S.K. Korsak. Nonlinear microwave properties of epitaxial HTS films. Low Temp. Phys. 23, 782 (1997). https://doi.org/10.1063/1.593446

V.M. Pan, A.A. Kalenyuk, A.L. Kasatkin, O.M. Ivanyuta, G.A. Melkov. Microwave Response of Perfect YBa2Cu3O7?x Thin films deposited on CeO2-buffered saphire: A probe for pairing symmetry. J. Supercond. Nov. Magn. 20, 59 (2007). https://doi.org/10.1007/s10948-006-0190-7

G.A. Melkov, Y.V. Egorov, O.M. Ivanjuta, V.Y. Malyshev, H.K. Zeng, K.H. Wu, J.Y. Juang. HTS surface wave resonators. J. Supercond. 13, 95 (2000). https://doi.org/10.1023/A:1007734428003

V.F. Tarasov, I.V. Korotash, V.F. Taborov, C.G. Tretiatchenko, V.V. Vysotskii, V.M. Pan, A.N. Ivanyuta, G.A. Melkov, M. Lorenz. Band-pass filters for 1.8 GHz frequency range using double-sided YBCO/Au Films on CeO2-buffered sapphire. J. Supercond. 14, 115 (2001) https://doi.org/10.1023/A:1007896609014

A.-M. Valente-Feliciano. Superconducting RF materials other than bulk niobium: A review. Supercond. Sci. Technol. 29, 113002 (2016). https://doi.org/10.1088/0953-2048/29/11/113002

Downloads

Published

2019-11-01

How to Cite

Borisenko, P. A., Pokusinskii, A. O., & Kasatkin, A. L. (2019). Microwave Response of Nanostructured High-Tc Superconductor Thin Films. Ukrainian Journal of Physics, 64(10), 969. https://doi.org/10.15407/ujpe64.10.969

Issue

Section

Physics of magnetic phenomena and physics of ferroics