Recent Trends in Microwave Magnetism and Superconductivity

  • O. V. Prokopenko Taras Shevchenko National University of Kyiv, Faculty of Radiophysics, Electronics, and Computer Systems
  • D. A. Bozhko James Watt School of Engineering, University of Glasgow, Department of Physics and Energy Science, University of Colorado at Colorado Springs
  • V. S. Tyberkevych Department of Physics, Oakland University
  • A. V. Chumak Faculty of Physics, University of Vienna, Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universit¨at Kaiserslautern
  • V. I. Vasyuchka Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universit¨at Kaiserslautern
  • A. A. Serga Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universit¨at Kaiserslautern
  • O. Dzyapko Institute for Applied Physics and Center for Nonlinear Science, University of Muenster
  • R. V. Verba Institute of Magnetism
  • A. V. Talalaevskij Department of Physics, University of Regensburg
  • D. V. Slobodianiuk Taras Shevchenko National University of Kyiv, Faculty of Radiophysics, Electronics, and Computer Systems
  • Yu. V. Kobljanskyj Taras Shevchenko National University of Kyiv, Faculty of Radiophysics, Electronics, and Computer Systems
  • V. A. Moiseienko Taras Shevchenko National University of Kyiv, Faculty of Radiophysics, Electronics, and Computer Systems
  • S. V. Sholom Department of Physics, Oklahoma State University
  • V. Yu. Malyshev Taras Shevchenko National University of Kyiv, Faculty of Radiophysics, Electronics, and Computer Systems
Keywords: spin wave, magnonic crystal, spin-wave logic, spin-wave soliton, spin-wave bullet, spin-wave droplet, parametric pumping, magnon gas, kinetic instability, Bose–Einstein condensate, magnon superfluidity, high-temperature superconductivity, Josephson junction, microwave devices

Abstract

We review the development trends in microwave magnetism and superconductivity over the last five decades. The review contains the key results of recent studies related to the promising areas of modern magnetism and applied physics – spintronics, magnonics, magnon caloritronics, physics of magnonic crystals, spin-wave logic, and the development of novel micro- and nano-scale magnetic devices. The main achievements in these fields of physics are summarized and generalized.

References

H. Kamerlingh Onnes. Further experiments with liquid helium. D. On the change of the electrical resistance of pure metals at very low temperatures, etc. V. The disappearance of the resistance of mercury. Commun. Phys. Lab. Univ. Leiden 122b, 124 (1911) reprinted in Proc. K. Ned. Akad. Wet. 14, 113 (1911) see also H. Kamerlingh Onnes. Commun. Phys. Lab. Univ. Leiden. Suppl. 29 (1911).

J.G. Bednorz, K.A. M?uller. Possible high-Tc superconductivity in the Ba-La-Cu-O system. Z. Phys. B 64, 189 (1986). https://doi.org/10.1007/BF01303701

A.P. Drozdov, P.P. Kong, V.S. Minkov, S.P. Besedin, M.A. Kuzovnikov, S. Mozaffari, L. Balicas, F.F. Balakirev, D.E. Graf, V.B. Prakapenka, E. Greenberg, D.A. Knyazev, M. Tkacz, M.I. Eremets. Superconductivity at 250K in lanthanum hydride under high pressures. Nature 569, 528 (2019). https://doi.org/10.1038/s41586-019-1201-8

L. Landau, E. Lifshitz. On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys. Z. Sowjetunion 8, 153 (1935).

E. Zavoisky. Spin-magnetic resonance in paramagnetics. J. Phys. USSR 9, 245 (1945).

J.H.E. Griffiths. Anomalous high-frequency resistance of ferromagnetic metals. Nature 158, 670 (1946). https://doi.org/10.1038/158670a0

G.A. Melkov, I.L. Zablotskii. Nonlinear impedance of high-temperature superconductor films. Ukr. J. Phys. 35, 921 (1990) (in Russian).

G.A. Melkov, I.L. Zablotskii. Surface resistance of single-crystal Y-Ba-Cu-O films in a magnetic field. Ukr. J. Phys. 38, 420 (1993) (in Russian).

G.A. Melkov, A.L. Kasatkin, V.Yu. Malyshev. The surface impedance of epitaxial HTSC films in mixed-state. Low Temp. Phys. 20, 868 (1994) (in Russian).

G.A. Melkov, V.Yu. Malyshev, A.V. Bagada. Microwave impedance of epitaxial high-temperature superconductor films. Low Temp. Phys. 21, 1192 (1995) (in Russian).

G.A. Melkov, V.Y. Malyshev. The microwave model of HTS epitaxial films. Czech. J. Phys. 46, 1007 (1996). https://doi.org/10.1007/BF02583811

G.A. Melkov, E.A. Pashitskii. Anomalous behavior of the microwave surface resistance of the high-Tc superconductors as a result of the "multi-petal" gap structure in anisotropic s-wave Cooper pairing Czech. J. Phys. 46, 971 (1996). https://doi.org/10.1007/BF02583793

G.A. Melkov, V.Yu. Malyshev, S.K. Korsak. Nonlinear microwave properties of epitaxial HTS films. Low Temp. Phys. 23, 782 (1997). https://doi.org/10.1063/1.593446

V. Shaternik, M. Belogolovskii, T. Prikhna, A. Shapovalov, O. Prokopenko, D. Jabko, O. Kudrja, O. Suvorov, V. Noskov, Universal character of tunnel conductivity of metalinsulator-metal heterostructures with nanosized oxide barriers. Phys. Procedia 36, 94 (2012). https://doi.org/10.1016/j.phpro.2012.06.052

V.M. Pan, V.S. Flis, O.P. Karasevska, V.I. Matsui, I.I. Peshko, V.L. Svetchnikov, M. Lorenz, A.N. Ivanyuta, G.A. Melkov, E.A. Pashitskii, H.W. Zandbergen. Effect of growth-induced linear defects on high frequency properties of pulse-laser deposited YBa2Cu3O7?б films. J. Supercond. 14, 105 (2001). https://doi.org/10.1023/A:1007844524943

V.M. Pan, A.L. Kasatkin, V.A. Komashko, C.G. Tretiatchenko, O.M. Ivanyuta, G.A. Melkov. Two-peak temperature dependence of microwave surface impedance of single-crystalline YBCO thin films: role of pairing symmetry and defect structure. J. Supercond. Nov. Magn. 19, 561 (2006). https://doi.org/10.1007/s10948-006-0225-0

V.M. Pan, A.A. Kalenyuk, A.L. Kasatkin, O.M. Ivanyuta, G.A. Melkov. Microwave response of perfect YBa2Cu3O7?x thin films deposited on CeO2-buffered saphire: A probe for pairing symmetry. J. Supercond. Nov. Magn. 20, 59 (2007). https://doi.org/10.1007/s10948-006-0190-7

G.A. Melkov, Yu.V. Egorov. Swihart waves and surface plasmons in a parallel-plate superconducting transmission line. Low Temp. Phys. 26, 108 (2000). https://doi.org/10.1063/1.593873

G.A. Melkov, Y.V. Egorov, O.M. Ivanyuta, V.Y. Malyshev, H.K. Zeng, Kh. Wu, J.Y. Juang. HTS surface wave resonators. J. Supercond. 13, 95 (2000). https://doi.org/10.1023/A:1007734428003

G.A. Melkov, O.M. Ivanyuta, O.V. Prokopenko, V.M. Raksha, A.M. Klushin, M. Siegel. Embedding of Josephson junctions in the surface wave resonator in the Ka-band. In: Proceedings of the Fourth International Kharkov Symposium 'Physics and Engineering of Millimeter and Sub-Millimeter Waves' Symposium (MSMW'2001, 4-9 June 2001, Kharkov, Ukraine) 1, 363 (2001).

A.M. Klushin, G.A. Melkov, O.M. Ivanyuta, K. Numssen, M. Siegel. Irradiation of multi-junction Josephson arrays embedded in a surface wave resonator. Phys. C 372-376, 305 (2002). https://doi.org/10.1016/S0921-4534(02)00656-1

G.A. Melkov, Y.V. Egorov, A.N. Ivanyuta, A.M. Klushin, M. Siegel, R. Semerad. Josephson generation of linear array of Josephson junctions in surface wave resonator. Izvestiya VUZ. Radioelektronika 45, 38 (2002) (in Russian).

O.M. Ivanyuta, O.V. Prokopenko, V.M. Raksha, A.M. Klushin. Microwave detection using Josephson junction arrays integrated in a resonator. Phys. Status Solidi C 2, 1688 (2005). https://doi.org/10.1002/pssc.200460812

O.M. Ivanyuta, O.V. Prokopenko, Ya.I. Kishenko, V.M. Raksha, A.M. Klushin. The effect of the external magnetic field on the current-voltage characteristic of HTS Josephson junction arrays. J. Low Temp. Phys. 139, 97 (2005). https://doi.org/10.1007/s10909-005-3915-2

G.A. Melkov, O.M. Ivanyuta, O.V. Prokopenko, V.M. Raksha. Microwave properties of the surface wave resonator in the below-cutoff waveguide. In: Proceedings of the International Conference "Modern Problems of Radio Engineering, Telecommunications and Computer Science" (TCSET, 18-23 February 2002, Lviv-Slavsko, Ukraine), 75 (2002).

G.A. Melkov, A.V. Prokopenko, V.N. Raksha. Rarefaction of the natural oscillation spectrum of a surface wave resonator. Radioelectronics and Communications Systems 47, 20 (2004).

G.A. Melkov, A.M. Klushin, O.D. Poustylnik, O.V. Prokopenko, V.M. Raksha. Irradiation of HTS Josephson junctions with the surface wave resonator. In: Proceedings of the The Fifth International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter, and Submillimeter Waves (MSMW'2004, 21-26 June 2004, Kharkov, Ukraine) 2, 128 (2004).

G.A. Melkov, O.V. Prokopenko, V.M. Raksha. Microwave HTS filter based on coupled surface wave resonators. In: Proceedings of the 2007 International Kharkov Symposium Physics and Engineering of Millimeter and Sub-Millimeter Waves (MSMW'2007, 25-30 June 2007, Kharkov, Ukraine) 1, 401 (2007). https://doi.org/10.1109/MSMW.2007.4294676

M. Lorenz, V.M. Pan, V.F. Tarasov, O.M. Ivanyuta, G.A. Melkov, V.V. Vysotskii, V.F. Taborov, I.V. Korotash, C.G. Tretiatchenko. Band-pass filter for 1.8 GHz frequency range using double-sided YBCO/Au films on CeO2-buffered sapphire. J. Supercond. 14, 115 (2001). https://doi.org/10.1023/A:1007896609014

G.A. Melkov, S.V. Sholom. Parametric excitation of spin waves by electromagnetic pumping in the structure of magnetic film - HTS film. Abstracts of the Vth All-Soviet Union School on Spin-Wave Microwave Electronics (Zvenigorod, USSR), 35 (1991) (in Russian).

G.A. Melkov, Y.V. Egorov. A possibility of parametric amplification of microwave signals in HTS films. Izvestiya VUZ. Radioelektronika 8, 52 (1997) (in Russian).

G.A. Melkov, I.V. Krutsenko. Mechanisms that limit the amplitudes of parametrically excited spin waves in ferrites. J. Exp. Theor. Phys. 45, 295 (1977).

I.V. Krutsenko, V.S. L'vov, G.A. Melkov. Spectral density of parametrically excited waves. J. Exp. Theor. Phys. 48, 561 (1978).

A.S. Bakai, I.V. Krutsenko, G.A. Melkov, G.G. Sergeeva. Investigation of distributions of spin waves excited parametrically by parallel pumping of spin-wave instability in ferrites. J. Exp. Theor. Phys. 49, 118 (1979).

A.V. Lavrinenko, V.S. L'vov, G.A. Melkov, V.B. Cherepanov. "Kinetic" instability of a strongly nonequilibrium system of spin waves and tunable radiation of a ferrite. J. Exp. Theor. Phys. 54, 542 (1981).

G.A. Melkov, A.Yu. Taranenko. Nonlinear emission from a ferrite in ferromagnetic resonance. J. Exp. Theor. Phys. 64, 592 (1986).

V.S. Lutovinov, G.A. Melkov, A.Yu. Taranenko, V.B. Cherepanov. Kinetic instability of first order spin waves in ferrite. J. Exp. Theor. Phys. 68, 432 (1989).

G.A. Melkov, V.L. Safonov, A.Y. Taranenko, S.V. Sholom. Kinetic instability and bose condensation of nonequilibrium magnons. J. Magn. Magn. Mater. 132, 180 (1994). https://doi.org/10.1016/0304-8853(94)90311-5

G.A. Melkov, A.A. Serga, V.S. Tiberkevich, A.N. Oliynyk, A.N. Slavin. Wave front reversal of a dipolar spin-wave pulse in a nonstationary three-wave parametric interaction. Phys. Rev. Lett. 84, 3438 (2000). https://doi.org/10.1103/PhysRevLett.84.3438

G.A. Melkov, V.I. Vasyuchka, Yu.V. Kobljanskyj, A.N. Slavin. Wave-front reversal in a medium with in-homogeneities and an anisotropic wave spectrum. Phys. Rev. B 70, 224407 (2004). https://doi.org/10.1103/PhysRevB.70.224407

G.A. Melkov, V.I. Vasyuchka, A.V. Chumak, A.N. Slavin. Double-wave-front reversal of dipole-exchange spin waves in yttrium-iron garnet films. J. Appl. Phys. 98, 074908 (2005). https://doi.org/10.1063/1.2077842

G.A. Melkov, V.I. Vasyuchka, A.V. Chumak, V.S. Tiberkevich, A.N. Slavin. Wave front reversal of nonreciprocal surface dipolar spin waves. J. Appl. Phys. 99, 08P513 (2006). https://doi.org/10.1063/1.2172184

G.A. Melkov, V.I. Vasyuchka, V.V. Lazovskiy, V.S. Tiberkevich, A.N. Slavin. Wave front reversal with frequency conversion in a nonreciprocal medium. Appl. Phys. Lett. 89, 252510 (2006). https://doi.org/10.1063/1.2404587

B.Ya. Zel'dovich, R.F. Pilipetskii, V.V. Shkunov. Principles of Phase Conjugation (Springer, 1985). https://doi.org/10.1007/978-3-540-38959-0

G.A. Melkov, A.A. Serga, A.N. Slavin, V.S. Tiberkevich, A.N. Oleinik, A.V. Bagada. Parametric interaction of magnetostatic waves with a nonstationary local pump. J. Exp. Theor. Phys. 89, 1189 (1999).https://doi.org/10.1134/1.559071

A.A. Serga, B. Hillebrands, S.O. Demokritov, A.N. Slavin, P. Wierzbicki, V. Vasyuchka, O. Dzyapko, A. Chumak. Parametric generation of forward and phase-conjugated spin-wave bullets in magnetic films. Phys. Rev. Lett. 94, 167202 (2005). https://doi.org/10.1103/PhysRevLett.94.167202

Yu.V. Kobljanskyj, V.S. Tiberkevich, A.V. Chumak, V.I. Vasyuchka, G.A. Melkov, A.N. Slavin. Methods of relaxation reversal for spin waves and oscillations. J. Magn. Magn. Mater. 272-276, 991 (2004). https://doi.org/10.1016/j.jmmm.2003.12.044

Yu.V. Kobljanskyj, G.A. Melkov, V.S. Tiberkevich, V.I. Vasyuchka, A.N. Slavin. Microwave signal processing using dipole-exchange spin waves. J. Appl. Phys. 93, 8594 (2003). https://doi.org/10.1063/1.1557857

V.I. Vasyuchka, G.A. Melkov, A.N. Slavin, A.V. Chumak, V.A. Moiseienko, B. Hillebrands. nonresonant wave front reversal of spin waves used for microwave signal processing. J. Phys. D: Appl. Phys. 43, 325001 (2010). https://doi.org/10.1088/0022-3727/43/32/325001

G.A. Melkov, Yu.V. Kobljanskyj, A.A. Serga, V.S. Tiberkevich, A.N. Slavin. Reversal of momentum relaxation. Phys. Rev. Lett. 86, 4918 (2001). https://doi.org/10.1103/PhysRevLett.86.4918

A.V. Chumak, A.A. Serga, G.A. Melkov, V. Tiberkevich, A.N. Slavin, B. Hillebrands. Parametrically-stimulated recovery of a microwave signal using standing spin-wave modes of a magnetic film. Phys. Rev. B 79, 014405 (2009). https://doi.org/10.1103/PhysRevB.79.014405

S. Sch?afer, A.V. Chumak, A.A. Serga, G.A. Melkov, B. Hillebrands. Microwave spectral analysis by means of nonresonant parametric recovery of spin-wave signals in a thin magnetic film. Appl. Phys. Lett. 92, 162514 (2008). https://doi.org/10.1063/1.2917590

V.I. Vasyuchka, A.A. Serga, C.W. Sandweg, D.V. Slobodianiuk, G.A. Melkov, B. Hillebrands. Explosive electromagnetic radiation by the relaxation of a multimode magnon system. Phys. Rev. Lett. 111, 187206 (2013). https://doi.org/10.1103/PhysRevLett.111.187206

Yu.V. Kobljanskyj, G.A. Melkov, A.A. Serga, V.S. Tiberkevich, A.N. Slavin. Effective microwave ferrite convolver using a dielectric resonator. Appl. Phys. Lett. 81, 1645 (2002). https://doi.org/10.1063/1.1504182

V.I. Vasyuchka, G.A. Melkov, V.A. Moiseienko, A.V. Prokopenko, A.N. Slavin. Correlation receiver of below-noise pulsed signals based on parametric interactions of spin waves in magnetic films. J. Magn. Magn. Mater. 321, 3498 (2009). https://doi.org/10.1016/j.jmmm.2009.06.063

G.A. Melkov, D.V. Slobodianiuk, V.S. Tiberkevich, G. De Loubens, O. Klein, A.N. Slavin. Nonlinear ferromagnetic resonance in nanostructures having discrete spectrum of spin-wave modes. IEEE Magn. Lett. 4, 4000504 (2013). https://doi.org/10.1109/LMAG.2013.2278682

G.A. Melkov, D.V. Slobodianiuk. A strongly nonequilibrium state in magnetic nanodots at high pumping levels. Ukr. J. Phys. 58, 189 (2013). https://doi.org/10.15407/ujpe58.02.0189

D.V. Slobodianiuk, O.V. Prokopenko, G.A. Melkov. Eigenmodes of two-dimensional conservative droplet soliton. J. Magn. Magn. Mater. 439, 144 (2017). https://doi.org/10.1016/j.jmmm.2017.04.093

D. Slobodianiuk, G. Melkov, K. Schultheiss, H. Schultheiss, R. Verba. Nonlinear ferromagnetic resonance in the presence of 3-magnon scattering in magnetic nanostructures. IEEE Magn. Lett. 10, 6103405 (2019). https://doi.org/10.1109/LMAG.2019.2913132

A.M. Kosevich, B.A. Ivanov, A.S. Kovalev. Magnetic solitons. Phys. Rep. 194, 117 (1990). https://doi.org/10.1016/0370-1573(90)90130-T

R.P. Cowburn, D.K. Koltsov, A.O. Adeyeye, M.E. Welland. Single-domain circular nanomagnets. Phys. Rev. Lett. 83, 1042 (1999). https://doi.org/10.1103/PhysRevLett.83.1042

T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, T. Ono. Magnetic vortex core observation in circular dots of permalloy. Science 289, 930 (2000). https://doi.org/10.1126/science.289.5481.930

U.K. Rossler, A.N. Bogdanov, C. Pfleiderer. Spontaneous skyrmion ground states in magnetic metals. Nature Lett. 442, 797 (2006). https://doi.org/10.1038/nature05056

S. Muhlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, P. Boni. Skyrmion lattice in a chiral magnet. Science 323, 915 (2009). https://doi.org/10.1126/science.1166767

A.G. Gurevich, G.A. Melkov. Magnetization Oscillations and Waves (CRC, 1996).

B.A. Kalinikos, A.N. Slavin. Theory of dipole-exchange spin-wave spectrum for ferromagnetic films with mixed exchange boundary conditions. J. Phys. C - Solid State Phys. 19, 7013 (1986). https://doi.org/10.1088/0022-3719/19/35/014

A.N. Slavin, B.A. Kalinikos, N.G. Kovshikov. Chapter 9 in P.E. Wigen (Ed.) Nonlinear Phenomena and Chaos in Magnetic Materials (World Scientific, 1994).

N.N. Akhmediev, A. Ankiewicz. Solitons, Nonlinear Pulses and Beams (Chapman and Hall, 1997).

M.J. Lighthill. Contributions to the theory of waves in nonlinear dispersive systems. IMA J. Appl. Math. 1, 269 (1965). https://doi.org/10.1093/imamat/1.3.269

C. Mathieu, J. Jorzick, A. Frank, S.O. Demokritov, A.N. Slavin, B. Hillebrands, B. Bartenlian, C. Chappert, D. Decanini, F. Rousseaux, E. Cambril. Lateral quantization of spin waves in micron size magnetic wires. Phys. Rev. Lett. 81, 3968 (1998). https://doi.org/10.1103/PhysRevLett.81.3968

B.A. Kalinikos, N.G. Kovshikov, A.N. Slavin. Observation of spin wave solitons in ferromagnetic films. JETP Lett. 38, 413 (1983).

B.A. Kalinikos, N.G. Kovshikov, A.N. Slavin. Envelope solitons and modulational instability of dipole-exchange spin waves in yttrium-iron garnet films. J. Exp. Theor. Phys. 94, 159 (1988).

B.A. Kalinikos, N.G. Kovshikov, P.A. Kolodin, A.N. Slavin. Observation of dipole-exchange spin-wave solitons in tangentially magnetized ferromagnetic films. Solid State Commun. 74, 989 (1990). https://doi.org/10.1016/0038-1098(90)90471-M

P. De Gasperis, R. Marcelli, G. Miccoli. Magnetostatic soliton propagation at microwave frequency in magnetic garnet films. Phys. Rev. Lett. 59, 481 (1987). https://doi.org/10.1103/PhysRevLett.59.481

M.A. Tsankov, M. Chen, C.E. Patton. Forward volume wave microwave envelope solitons in yttrium-iron garnet films - propagation, decay, and collision. J. Appl. Phys. 76, 4274 (1994). https://doi.org/10.1063/1.357312

M. Chen, M.A. Tsankov, J.M. Nash, C.E. Patton. Backward volume wave microwave envelope solitons in yttrium iron garnet films. Phys. Rev. B 49, 12773 (1994). https://doi.org/10.1103/PhysRevB.49.12773

N.G.Kovshikov,B.A.Kalinikos,C.E.Patton,E.S.Wright, J.M. Nash. Formation, propagation, reflection, and collision of microwave envelope solitons in yttrium iron garnet films. Phys. Rev. B 54 15210 (1996). https://doi.org/10.1103/PhysRevB.54.15210

B.A. Kalinikos, N.G. Kovshikov, C.E. Patton. Decay free microwave magnetic envelope soliton pulse trains in yttrium iron garnet thin films. Phys. Rev. Lett. 78, 2827 (1997). https://doi.org/10.1103/PhysRevLett.78.2827

M. Chen, M.A. Tsankov, J.M. Nash, C.E. Patton. Microwave magnetic envelope dark solitons in Yttrium Iron Garnet thin films. Phys. Rev. Lett. 70, 1707 (1993). https://doi.org/10.1103/PhysRevLett.70.1707

B.A. Kalinikos, M.M. Scott, C.E. Patton. Self-generation of fundamental dark solitons in magnetic films. Phys. Rev. Lett. 84, 4697 (2000). https://doi.org/10.1103/PhysRevLett.84.4697

A.N. Slavin. Thresholds of envelope soliton formation in a weakly dissipative medium. Phys. Rev. Lett. 77, 4644 (1996). https://doi.org/10.1103/PhysRevLett.77.4644

A.V. Bagada, G.A. Melkov, A.A. Serga, A.N. Slavin. Parametric interaction of dipolar spin-wave solitons with localized electromagnetic pumping. Phys. Rev. Lett. 79, 2137 (1997). https://doi.org/10.1103/PhysRevLett.79.2137

P.A. Kolodin, P. Kabos, C.E. Patton, B.A. Kalinikos, N.G. Kovshikov, M.P. Kostylev. Amplification of microwave magnetic envelope solitons in thin yttrium iron garnet films by parallel pumping. Phys. Rev. Lett. 80, 1976 (1998). https://doi.org/10.1103/PhysRevLett.80.1976

A.L. Gordon, G.A. Melkov, A.A. Serga, V.S. Tiberkevich, A.V. Bagada, A.N. Slavin. Phase conjugation of linear signals and solitons of magnetostatic waves. JETP Lett. 67, 913 (1998). https://doi.org/10.1134/1.567767

G.A. Melkov, Y.V. Kobljanskyj, A.A. Serga, V.S. Tiber- kevich, A.N. Slavin. Nonlinear amplification and compression of envelope solitons by localized nonstationary parametric pumping. J. Appl. Phys. 89, 6689 (2001). https://doi.org/10.1063/1.1357141

G.A. Melkov, Y.V. Kobljanskyj, A.A. Serga, V.S. Tiberkevich, A.N. Slavin. Parametric interaction of dipolar spin-wave solitons with localized electromagnetic pumping. Phys. Status Solidi A 189, 1007 (2002). https://doi.org/10.1002/1521-396X(200202)189:3<1007::AID-PSSA1007>3.0.CO;2-S

A.A. Serga, M.P. Kostylev, B.A. Kalinikos, S.O. Demokritov, B. Hillebrands, H. Benner. Parametric generation of solitonlike spin-wave pulses in ring resonators based on ferromagnetic films. JETP Lett. 77, 300 (2003). https://doi.org/10.1134/1.1577761

A.A. Serga, S.O. Demokritov, B. Hillebrands, A.N. Slavin. Formation of envelope solitons from parametrically amplified and conjugated spin-wave pulses. J. Appl. Phys 93, 8758 (2003). https://doi.org/10.1063/1.1558603

B.A. Kalinikos, N.G. Kovshikov, M.P. Kostylev, H. Benner. Self-generation of spin-wave envelope soliton trains with different periods. JETP Lett. 76, 253 (2002). https://doi.org/10.1134/1.1520616

A.B. Ustinov, B.A. Kalinikos, V.E. Demidov, S.O. Demokritov. Generation of dense spin-wave soliton trains in active ring resonators. JETP Lett. 80, 052405 (2009). https://doi.org/10.1103/PhysRevB.80.052405

A.A. Serga, S.O. Demokritov, B. Hillebrands, A.N. Slavin. Self-generation of two-dimensional spin-wave bullets. Phys. Rev. Lett. 92 117203 (2004). https://doi.org/10.1103/PhysRevLett.92.117203

S.O. Demokritov, A.A. Serga, V.E. Demidov, B. Hillebrands, M.P. Kostylev, B.A. Kalinikos. Experimental observation of symmetry-breaking nonlinear modes in an active ring. Nature 426, 159 (2003). https://doi.org/10.1038/nature02042

A.B. Ustinov, V.E. Demidov, A.V. Kondrashov, B.A. Kalinikos, S.O. Demokritov. Observation of the chaotic spin-wave soliton trains in magnetic films. Phys. Rev. Lett. 106, 017201 (2011). https://doi.org/10.1103/PhysRevLett.106.017201

Z.H. Wang, A. Hagerstrom, J.Q. Anderson, W. Tong, M.Z. Wu, L.D. Carr, R. Eykholt, B.A. Kalinikos. Chaotic spin-wave solitons in magnetic film feedback rings. Phys. Rev. Lett. 107, 114102 (2011). https://doi.org/10.1103/PhysRevLett.107.114102

M.Z. Wu, B.A. Kalinikos, L.D. Carr, C.E. Patton. Observation of spin-wave soliton fractals in magnetic film active feedback rings. Phys. Rev. Lett. 96, 187202 (2006). https://doi.org/10.1103/PhysRevLett.96.187202

M.Z. Wu, C.E. Patton. Experimental observation of Fermi-Pasta-Ulam recurrence in a nonlinear feedback ring system. Phys. Rev. Lett. 98, 047202 (2007). https://doi.org/10.1103/PhysRevLett.98.047202

V.E. Demidov, U.F. Hansen, O. Dzyapko, N. Koulev, S.O. Demokritov, A.N. Slavin. Formation of longitudinal patterns and dimensionality crossover of nonlinear spin waves in ferromagnetic stripes. Phys. Rev. B 74, 092407 (2006). https://doi.org/10.1103/PhysRevB.74.092407

A.A. Serga, M.P. Kostylev, B. Hillebrands. Formation of guided spin-wave bullets in ferrimagnetic film stripes. Phys. Rev. Lett. 101, 137204 (2008). https://doi.org/10.1103/PhysRevLett.101.137204

M. Bauer, C. Mathieu, S.O. Demokritov, B. Hillebrands, P.A. Kolodin, S. Sure, H. Dotsch, V. Grimalsky, Y. Rapoport, A.N. Slavin. Direct observation of two-dimensional self-focusing of spin waves in magnetic films. Phys. Rev. B 56, R8483 (1997). https://doi.org/10.1103/PhysRevB.56.R8483

M. Bauer, O. Buttner, S.O. Demokritov, B. Hillebrands, V. Grimalsky, Y. Rapoport, A.N. Slavin. Observation of spatiotemporal self-focusing of spin waves in magnetic films. Phys. Rev. Lett. 81, 3769 (1998). https://doi.org/10.1103/PhysRevLett.81.3769

O. Buttner, M. Bauer, S.O. Demokritov, B. Hillebrands, M.P. Kostylev, B.A. Kalinikos, A.N. Slavin. Collisions of spin wave envelope solitons and self-focused spin-wave packets in yttrium iron garnet films. Phys. Rev. Lett. 82, 4320 (1999). https://doi.org/10.1103/PhysRevLett.82.4320

A.N. Slavin, O. Buttner, M. Bauer, S.O. Demokritov, B. Hillebrands, M.P. Kostylev, B.A. Kalinikos, V.V. Grimalsky, Y. Rapoport. Collision properties of quasi-onedimensional spin-wave solitons and two-dimensional spin-wave bullets. Chaos 13, 693 (2003). https://doi.org/10.1063/1.1557961

M.P. Kostylev, A.A. Serga, B. Hillebrands. Radiation of caustic beams from a collapsing bullet. Phys. Rev. Lett. 106, 134101 (2011). https://doi.org/10.1103/PhysRevLett.106.134101

W.H.Rippard,M.R.Pufall, S.Kaka, S.E.Russek,T.J. Silva. Direct-current induced dynamics inCo90Fe10/Ni80Fe20 point contacts. Phys. Rev. Lett. 92, 027201 (2004). https://doi.org/10.1103/PhysRevLett.92.027201

A. Slavin, V. Tiberkevich. Spin wave mode excited by spin-polarized current in a magnetic nanocontact is a standing self-localized wave bullet. Phys. Rev. Lett. 95, 237201 (2005). https://doi.org/10.1103/PhysRevLett.95.237201

S. Bonetti, V. Tiberkevich, G. Consolo, G. Finocchio, P. Muduli, F. Mancoff, A. Slavin, J. Akerman. Experimental evidence of self-localized and propagating spin-wave modes in obliquely magnetized current-driven nanocontacts. Phys. Rev. Lett. 105, 217204 (2010). https://doi.org/10.1103/PhysRevLett.105.217204

S. Bonetti, V. Puliafito, G. Consolo, V.S. Tiberkevich, A.N. Slavin, J. Akerman. Power and linewidth of propagating and localized modes in nanocontact spin-torque oscillators. Phys. Rev. B 85, 174427 (2012). https://doi.org/10.1103/PhysRevB.85.174427

D. Backes, F. Macia, S. Bonetti, R. Kukreja, H. Ohldag, A.D. Kent. Direct observation of a localized magnetic soliton in a spin-transfer nanocontact. Phys. Rev. Lett. 115, 127205 (2015). https://doi.org/10.1103/PhysRevLett.115.127205

J.C. Slonczewski. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1 (1996). https://doi.org/10.1016/0304-8853(96)00062-5

L. Berger. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353 (1996). https://doi.org/10.1103/PhysRevB.54.9353

J.C. Slonczewski. Excitation of spin waves by an electric current. J. Magn. Magn. Mater. 195, L261 (1999). https://doi.org/10.1016/S0304-8853(99)00043-8

O.R. Sulymenko, O.V. Prokopenko, V.S. Tyberkevych, A.N. Slavin, A.A. Serga. Bullets and droplets: Two-dimensional spin-wave solitons in modern magnonics (Review Article). Low Temp. Phys. 44, 602 (2018). https://doi.org/10.1063/1.5041426

S.N. Bose. Plancks gesetz und lichtquantenhypothese. Z. Phys. 26, 178 (1924). https://doi.org/10.1007/BF01327326

A. Einstein. Quantentheorie des einatomigen idealen gases. Sitz. Ber. Preuss. Akad. Wiss. 22, 261 (1924).

A. Einstein. Quantentheorie des einatomigen idealen gases, 2. Abhandlung. Sitz. Ber. Preuss. Akad. Wiss. 23, 3 (1925).

M.H.Anderson, J.R.Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell. Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 198 (1995). https://doi.org/10.1126/science.269.5221.198

H. Fr?ohlich. Bose condensation of strongly excited longitudinal electric modes. Phys. Lett. A 26, 402 (1968). https://doi.org/10.1016/0375-9601(68)90242-9

A.S. Borovik-Romanov, Y.M. Bunkov, V.V. Dmitriev, Y.M. Mukharski??. Long-lived induction signal in superfluid 3He-B. JETP Lett. 40, 1033 (1984).

Yu.D. Kalafati, V.L. Safonov. Thermodynamic approach in the theory of paramagnetic resonance of magnons. J. Exp. Theor. Phys. 68, 1162 (1989).

Yu.D. Kalafati, V.L. Safonov. Theory of quasiequilibrium effects in a system of magnons excited by incoherent pumping. J. Exp. Theor. Phys. 73, 836 (1991).

G.A.Melkov, A.A. Serga. Nonlinear parametric excitation of spin waves. Front. Magn. Reduc. Dimens. Syst. 555 (1998). https://doi.org/10.1007/978-94-011-5004-0_31

S. Demokritov, B. Hillebrands, A.N. Slavin. Brillouin light scattering studies of confined spin waves: linear and nonlinear confinement. Phys. Rep. 348, 441 (2001). https://doi.org/10.1016/S0370-1573(00)00116-2

S.O. Demokritov, V.E. Demidov, O. Dzyapko, G.A. Melkov, A.A. Serga, B. Hillebrands, A.N. Slavin. Bose-Einstein condensation of quasi-equilibrium magnons at room temperature under pumping. Nature 443, 430 (2006). https://doi.org/10.1038/nature05117

A.A. Serga, T. Schneider, B. Hillebrands, M.P. Kostylev, A.N. Slavin. Shaping of microwave pulses using phase-sensitive spin-wave amplifier. Appl. Phys. Lett. 90, 022502 (2007). https://doi.org/10.1063/1.2429028

T. Neumann, A.A. Serga, B. Hillebrands. Probing of a parametrically pumped magnon gas with a nonresonant packet of traveling spin waves. Appl. Phys. Lett. 93, 252501 (2008). https://doi.org/10.1063/1.3050530

A.A. Serga, C.W. Sandweg, V.I. Vasyuchka, M.B. Jungfleisch, B. Hillebrands, A. Kreisel, P. Kopietz, M.P. Kostylev. Brillouin light scattering spectroscopy of parametrically excited dipole-exchange magnons. Phys. Rev. B 86, 134403 (2012). https://doi.org/10.1103/PhysRevB.86.134403

V.E. Demidov, O. Dzyapko, S.O. Demokritov, G.A. Melkov, A.N. Slavin. Thermalization of a parametrically driven magnon gas leading to Bose-Einstein condensation. Phys. Rev. Lett. 99, 037205 (2007). https://doi.org/10.1103/PhysRevLett.99.037205

P. Clausen, D.A. Bozhko, V.I. Vasyuchka, B. Hillebrands, G.A. Melkov, A.A. Serga. Stimulated thermalization of a parametrically driven magnon gas as a prerequisite for Bose-Einstein magnon condensation. Phys. Rev. B 91, 220402 (2015). https://doi.org/10.1103/PhysRevB.91.220402

O. Dzyapko, V.E. Demidov, S.O. Demokritov, G.A. Melkov, V.L. Safonov. Monochromatic microwave radiation from the system of strongly excited magnons. Appl. Phys. Lett. 92, 162510 (2008). https://doi.org/10.1063/1.2910653

A.V. Chumak, G.A. Melkov, V.E. Demidov, O. Dzyapko, V.L. Safonov, S.O. Demokritov. Bose-Einstein condensation of magnons under incoherent pumping. Phys. Rev. Lett. 102, 187205 (2009). https://doi.org/10.1103/PhysRevLett.102.187205

S.M. Rezende. Theory of coherence in Bose-Einstein condensation phenomena in a microwave-driven interacting magnon gas. Phys. Rev. B 79, 174411 (2009). https://doi.org/10.1103/PhysRevB.79.174411

B.A. Malomed, O. Dzyapko, V.E. Demidov, S.O. Demokritov. Ginzburg-Landau model of Bose-Einstein condensation of magnons. Phys. Rev. B 81, 024418 (2010). https://doi.org/10.1103/PhysRevB.81.024418

V.E. Demidov, O. Dzyapko, M. Buchmeier, T. Stockhoff, G. Schmitz, G.A. Melkov, S.O. Demokritov. Magnon kinetics and Bose-Einstein condensation studied in phase space. Phys. Rev. Lett. 101, 257201 (2008). https://doi.org/10.1103/PhysRevLett.101.257201

D.A. Bozhko, P. Clausen, A.V. Chumak, Yu.V. Kobljanskyj, B. Hillebrands, A.A. Serga. Formation of Bose-Einstein magnon condensate via dipolar and exchange thermalization channels. Low Temp. Phys. 41, 801 (2015). https://doi.org/10.1063/1.4932354

D.A. Bozhko, P. Clausen, G.A. Melkov, V.S. L'vov, A. Pomyalov, V.I. Vasyuchka, A.V. Chumak, B. Hillebrands, A.A. Serga. Bottleneck accumulation of hybrid magnetoelastic bosons. Phys. Rev. Lett. 118, 237201 (2017). https://doi.org/10.1103/PhysRevLett.118.237201

A.A. Serga, V.S. Tiberkevich, C.W. Sandweg, V.I. Vasyuchka, D.A. Bozhko, A.V. Chumak, T. Neumann, B. Obry, G.A. Melkov, A.N. Slavin, B. Hillebrands. Bose-Einstein condensation in an ultra-hot gas of pumped magnons. Nat. Commun. 5, 3452 (2014). https://doi.org/10.1038/ncomms4452

W. Wettling, W.D. Wilber, P. Kabos, C.E. Patton. Light scattering from parallel-pump instabilities in yttrium iron garnet. Phys. Rev. Lett. 51, 1680 (1983). https://doi.org/10.1103/PhysRevLett.51.1680

D.V. Slobodianiuk, O.V. Prokopenko. Kinetics of strongly nonequilibrium magnon gas leading to Bose-Einstein condensation. J. Nano- Electron. Phys. 9, 03033 (2017). https://doi.org/10.21272/jnep.9(3).03033

A.J.E. Kreil, D.A. Bozhko, H.Yu. Musiienko-Shmarova, V.I. Vasyuchka, V.S. L'vov, A. Pomyalov, B. Hillebrands, A.A. Serga. From kinetic instability to Bose-Einstein condensation and magnon supercurrents. Phys. Rev. Lett. 121, 077203 (2018). https://doi.org/10.1103/PhysRevLett.121.077203

G.A. Melkov, S.V. Sholom. Kinetic instability of spin waves in thin ferrite films. J. Exp. Theor. Phys. 72, 341 (1991).

M. Schneider, T. Br?acher, V. Lauer, P. Pirro, D.A. Bozhko, A.A. Serga, H.Yu. Musiienko-Shmarova, B. Heinz, Q. Wang, T. Meyer, F. Heussner, S. Keller, E.Th. Papaioannou, B. L?agel, T. L?ober, V.S. Tiberkevich, A.N. Slavin, C. Dubs, B. Hillebrands, A.V. Chumak. Bose-Einstein condensation of quasi-particles by rapid cooling. arXiv:1612.07305 (2016).

O. Dzyapko, V.E. Demidov, M. Buchmeier, T. Stockhoff, G. Schmitz, G.A. Melkov, S.O. Demokritov. Excitation of two spatially separated Bose-Einstein condensates of magnons. Phys. Rev. B 80, 060401 (2009). https://doi.org/10.1103/PhysRevB.80.060401

P. Nowik-Boltyk, O. Dzyapko, V.E. Demidov, N.G. Berloff, S.O. Demokritov. Spatially nonuniform ground state and quantized vortices in a two-component Bose-Einstein condensate of magnons. Sci. Rep. 2, 482 (2012). https://doi.org/10.1038/srep00482

D.A. Bozhko, A.A. Serga, P. Clausen, V.I. Vasyuchka, F. Heussner, G.A. Melkov, A. Pomyalov, V.S. L'vov, B. Hillebrands. Supercurrent in a room-temperature Bose-Einstein magnon condensate. Nat. Phys. 12, 1057 (2016). https://doi.org/10.1038/nphys3838

D.A. Bozhko, A.J.E. Kreil, H.Yu. Musiienko-Shmarova, A.A. Serga, A. Pomyalov, V.S. L'vov, B. Hillebrands. Bogoliubov waves and distant transport of magnon condensate at room temperature. Nat. Commun. 10, 2460 (2019). https://doi.org/10.1038/s41467-019-10118-y

O.Dzyapko, I. Lisenkov, P.Nowik-Boltyk, V.E.Demidov, S.O. Demokritov, B. Koene, A. Kirilyuk, T. Rasing, V. Tiberkevich, A. Slavin. Magnon-magnon interactions in a room-temperature magnonic Bose-Einstein condensate. Phys. Rev. B 96, 064438 (2017). https://doi.org/10.1103/PhysRevB.96.064438

V.Tiberkevich, I.V.Borisenko, P.Nowik-Boltyk, V.E.Demidov, A.B. Rinkevich, S.O. Demokritov, A.N. Slavin. Excitation of coherent second sound waves in a dense magnon gas. Sci. Rep. 9, 9063 (2019). https://doi.org/10.1038/s41598-019-44956-z

A. R?uckriegel, P. Kopietz, D.A. Bozhko, A.A. Serga, B. Hillebrands. Magnetoelastic modes and lifetime of magnons in thin yttrium iron garnet films. Phys. Rev. B 89, 184413 (2014). https://doi.org/10.1103/PhysRevB.89.184413

G.E.W. Bauer, E. Saitoh, B.J. van Wees. Spin caloritronics. Nat. Mater. 11, 391 (2012). https://doi.org/10.1038/nmat3301

K.-i. Uchida, J. Xiao, H. Adachi, J. Ohe, S. Takahashi, J. Ieda, T. Ota, Y. Kajiwara, H. Umezawa, H. Kawai, G.E.W. Bauer, S. Maekawa, E. Saitoh. Spin Seebeck insulator. Nat. Mater. 9, 894 (2010). https://doi.org/10.1038/nmat2856

C.W. Sandweg, Y. Kajiwara, A.V. Chumak, A.A. Serga, V.I. Vasyuchka, M.B. Jungfleisch, E. Saitoh, B. Hillebrands. Spin pumping by parametrically excited exchange magnons. Phys. Rev. Lett. 106, 216601 (2011). https://doi.org/10.1103/PhysRevLett.106.216601

C.M. Jaworski, J. Yang, S. Mack, D.D. Awschalom, R.C. Myers, J.P. Heremans. Spin-Seebeck effect: A phonon driven spin distribution. Phys. Rev. Lett. 106, 186601 (2011). https://doi.org/10.1103/PhysRevLett.106.186601

J. Xiao, G.E.W. Bauer, K.-i. Uchida, E. Saitoh, S. Maekawa. Theory of magnondriven spin Seebeck effect. Phys. Rev. B 81, 214418 (2010). https://doi.org/10.1103/PhysRevB.82.099904

H. Adachi, K.-i. Uchida, E. Saitoh, S. Maekawa. Theory of the spin Seebeck effect. Rep. Prog. Phys. 76, 036501 (2013). https://doi.org/10.1088/0034-4885/76/3/036501

A.A. Serga, A.V. Chumak, B. Hillebrands. YIG magnonics. J. Phys. D: Appl. Phys. 43, 264002 (2010). https://doi.org/10.1088/0022-3727/43/26/264002

V. Cherepanov, I. Kolokolov, V. L'vov. The saga of YIG: spectra, thermodynamics, interaction and relaxation of magnons in a complex magnet. Phys. Rep. - Rev. Sec. Phys. Lett. 229, 81 (1993). https://doi.org/10.1016/0370-1573(93)90107-O

M.B. Jungfleisch,T.An,K.Ando,Y.Kajiwara,K.-i.Uchida, V.I. Vasyuchka, A.V. Chumak, A.A. Serga, E. Saitoh, B. Hillebrands. Heat-induced damping modification in yttrium iron garnet/platinum hetero-structures. Appl. Phys. Lett. 102, 062417 (2013). https://doi.org/10.1063/1.4792701

E. Padr?on-Hern?andez, A. Azevedo, S.M. Rezende. Amplification of spin waves by thermal spin-transfer torque. Phys. Rev. Lett. 107, 197203 (2011). https://doi.org/10.1103/PhysRevLett.107.197203

H. Chang, P.A.P. Janantha, J. Ding, T. Liu, K. Cline, J.N. Gelfand,W. Li, M.C.Marconi, M.Wu. Role of damping in spin Seebeck effect in yttrium iron garnet thin films. Sci. Adv. 3, e1601614 (2017). https://doi.org/10.1126/sciadv.1601614

B. Obry, V.I. Vasyuchka, A.V. Chumak, A.A. Serga, B. Hillebrands. Spin-wave propagation and transformation in a thermal gradient. Appl. Phys. Lett. 101, 192406 (2012). https://doi.org/10.1063/1.4767137

T. Langner, D.A. Bozhko, S.A. Bunyaev, G.N. Kakazei, A.V. Chumak, A.A. Serga, B. Hillebrands, V.I. Vasyuchka. Spin-wave propagation through a magnonic crystal in a thermal gradient. J. Phys. D: Appl. Phys. 51, 344002 (2018). https://doi.org/10.1088/1361-6463/aad2ac

M. Vogel, A.V. Chumak, E.H. Waller, T. Langner, V.I. Vasyuchka, B. Hillebrands, G. von Freymann. Optically reconfigurable magnetic materials. Nat. Phys. 11, 487 (2015). https://doi.org/10.1038/nphys3325

T. An, V.I. Vasyuchka, K.-i. Uchida, A.V. Chumak, K. Yamaguchi, K. Harii, J. Ohe, M.B. Jungfleisch, Y. Kajiwara, H. Adachi, B. Hillebrands, S. Maekawa, E. Saitoh. Unidirectional spin-wave heat conveyer. Nat. Mater. 12, 549 (2013). https://doi.org/10.1038/nmat3628

K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, E. Saitoh. Observation of the spin Seebeck effect. Nature 455, 778 (2008). https://doi.org/10.1038/nature07321

K. Uchida, H. Adachi, T. Kikkawa, A. Kirihara, M. Ishida, S. Yorozu, S. Maekawa, E. Saitoh. Thermoelectric generation based on spin Seebeck effects. Proc. IEEE 104, 1946 (2016). https://doi.org/10.1109/JPROC.2016.2535167

M. Agrawal, V.I. Vasyuchka, A.A. Serga, A.D. Karenowska, G.A. Melkov, B. Hillebrands. Direct measurement of magnon temperature: New insight into magno-nphonon coupling in magnetic insulators. Phys. Rev. Lett. 111, 107204 (2013). https://doi.org/10.1103/PhysRevLett.111.107204

D. Meier, D. Reinhardt, M. van Straaten, C. Klewe, M. Althammer, M. Schreier, S.T.B. Goennenwein, A. Gupta, M. Schmid, C.H. Back, J.-M. Schmalhorst, T. Kuschel, G. Reiss. Longitudinal spin Seebeck effect contribution in transverse spin Seebeck effect experiments in Pt/YIG and Pt/NFO. Nat. Commun. 6, 8211 (2015). https://doi.org/10.1038/ncomms9211

M. Agrawal, V.I. Vasyuchka, A.A. Serga, A. Kirihara, P. Pirro, T. Langner, M.B. Jungfleisch, A.V. Chumak, E.Th. Papaioannou, B. Hillebrands. Role of bulk-magnon transport in the temporal evolution of the longitudinal spin-Seebeck effect. Phys. Rev. B 89, 224414 (2014). https://doi.org/10.1103/PhysRevB.89.224414

N. Roschewsky, M. Schreier, A. Kamra, F. Schade, K. Ganzhorn, S. Meyer, H. Huebl, S. Gepr?ags, R. Gross, S.T.B. Goennenwein. Time resolved spin Seebeck effect experiments. Appl. Phys. Lett. 104, 202410 (2014). https://doi.org/10.1063/1.4879462

M. Agrawal, A.A. Serga, V. Lauer, E.Th. Papaioannou, B. Hillebrands, V.I. Vasyuchka. Microwave-induced spin currents in ferromagnetic-insulator/normal-metal bilayer system. Appl. Phys. Lett. 105, 092404 (2014). https://doi.org/10.1063/1.4894636

A. Kehlberger, U. Ritzmann, D. Hinzke, E.-J. Guo, J. Cramer, G. Jakob, M.C. Onbasli, D.H. Kim, C.A. Ross, M.B. Jungfleisch, B. Hillebrands, U. Nowak, M. Kl?aui. Length scale of the spin Seebeck effect. Phys. Rev. Lett. 115, 096602 (2015). https://doi.org/10.1103/PhysRevLett.115.096602

M. Schreier, F. Kramer, H. Huebl, S. Gepr?ags, R. Gross, S.T.B. Goennenwein, T. Noack, T. Langner, A.A. Serga, B. Hillebrands, V.I. Vasyuchka. Spin Seebeck effect at microwave frequencies. Phys. Rev. B 93, 224430 (2016). https://doi.org/10.1103/PhysRevB.93.224430

J. Kimling, G.-M. Choi, J.T. Brangham, T. Matalla-Wagner, T. Huebner, T. Kuschel, F. Yang, D.G. Cahill. Picosecond spin Seebeck effect. Phys. Rev. Lett. 118, 057201 (2017). https://doi.org/10.1103/PhysRevLett.118.057201

T.S. Seifert, S. Jaiswal, J. Barker, S.T. Weber, I. Razdolski, J. Cramer, O. Gueckstock, S.F. Maehrlein, L. Nadvornik, S. Watanabe, C. Ciccarelli, A. Melnikov,

G. Jakob, M. M?unzenberg, S.T.B. Goennenwein, G. Woltersdorf, B. Rethfeld, P.W. Brouwer, M. Wolf, M. Kl?aui, T. Kampfrath. Femtosecond formation dynamics of the spin Seebeck effect revealed by terahertz spectroscopy. Nat. Commun. 9, 2899 (2018). https://doi.org/10.1038/s41467-018-05135-2

T. Hioki, R. Iguchi, Z. Qiu, D. Hou, K. Uchida, E. Saitoh. Time-resolved study of field-induced suppression of longitudinal spin Seebeck effect. Appl. Phys. Express 10, 73002 (2017). https://doi.org/10.7567/APEX.10.073002

T.B. Noack, H.Yu. Musiienko-Shmarova, T. Langner, F. Heussner, V. Lauer, B. Heinz, D.A. Bozhko, V.I. Vasyuchka, A. Pomyalov, V.S. L'vov, B. Hillebrands, A.A. Serga. Spin Seebeck effect and ballistic transport of quasi-acoustic magnons in room-temperature yttrium iron garnet films. J. Phys. D: Appl. Phys. 51, 234003 (2018). https://doi.org/10.1088/1361-6463/aac0f1

L.J. Cornelissen, J. Liu, R.A. Duine, J. Ben Youssef, B.J. van Wees. Long-distance transport of magnon spin information in a magnetic insulator at room temperature. Nat. Phys. 11, 1022 (2015). https://doi.org/10.1038/nphys3465

J. Shan, L.J. Cornelissen, J. Liu, J. Ben Youssef, L. Liang, B.J. van Wees. Criteria for accurate determination of the magnon relaxation length from the nonlocal spin Seebeck effect. Phys. Rev. B 96, 184427 (2017). https://doi.org/10.1103/PhysRevB.96.184427

K. Ganzhorn, T. Wimmer, J. Cramer, R. Schlitz, S. Gepr?ags, G. Jakob, R. Gross, H. Huebl, M. Kl?aui, S.T.B. Goennenwein. Temperature dependence of the nonlocal spin Seebeck effect in YIG/Pt nanostructures. AIP Advances 7, 085102 (2017). https://doi.org/10.1063/1.4986848

A.M. Pogorily, S.M. Ryabchenko, A.I. Tovstolytkin. Spintronics. Basic phenomena. Trends and development. Ukr. J. Phys. Reviews 6, 37 (2010).

M. Tsoi, A.G.M. Jansen, J. Bass, W.C. Chiang, M. Seck, V. Tsoi, P. Wyder. Excitation of a magnetic multilayer by an electric current. Phys. Rev. Lett. 80, 4281 (1998). https://doi.org/10.1103/PhysRevLett.80.4281

S.I. Kiselev, J.C. Sankey, I.N. Krivorotov, N.C. Emley, R.J. Schoelkopf, R.A. Buhrman, D.C. Ralph. Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature 425, 380 (2003). https://doi.org/10.1038/nature01967

S. Tsunegi, H. Kubota, K. Yakushiji, M. Konoto, S. Tamaru, A. Fukushima, H. Arai, H. Imamura, E. Grimaldi, R. Lebrun, J. Grollier, V. Cros, S. Yuasa. High emission power and Q factor in spin torque vortex oscillator consisting of FeB free layer. Appl. Phys. Express 7, 063009 (2014). https://doi.org/10.7567/APEX.7.063009

V.E. Demidov, S. Urazhdin, R. Liu, B. Divinskiy, A. Telegin, S.O. Demokritov. Excitation of coherent propagating spin waves by pure spin currents. Nature Commun. 7, 10446 (2016). https://doi.org/10.1038/ncomms10446

J. Torrejon, M. Riou, F. A. Araujo, S. Tsunegi, G. Khalsa, D. Querlioz, P. Bortolotti, V. Cros, K. Yakushiji, A. Fukushima, H. Kubota, S. Yuasa, M. D. Stiles, J. Grollier. Neuromorphic computing with nanoscale spintronic oscillators. Nature 547, 428 (2017). https://doi.org/10.1038/nature23011

G. Gerhart, E. Bankowski, G.A. Melkov, V.S. Tiberkevich, A.N. Slavin. Angular dependence of the microwave-generation threshold in a nanoscale spin-torque oscillator. Phys. Rev. B 76, 024437 (2007). https://doi.org/10.1103/PhysRevB.76.024437

G. Consolo, B. Azzerboni, G. Gerhart, G.A. Melkov, V. Tiberkevich, A.N. Slavin. Excitation of self-localized spin-wave bullets by spin-polarized current in in-plane magnetized magnetic nanocontacts: A micromagnetic study. Phys. Rev. B 76, 144410 (2007). https://doi.org/10.1103/PhysRevB.76.144410

V.E. Demidov, S. Urazhdin, G. de Loubens, O. Klein, V. Cros, A. Anane, S.O. Demokritov. Magnetization oscillations and waves driven by pure spin currents. Phys. Rep. 673, 1 (2017). https://doi.org/10.1016/j.physrep.2017.01.001

L. Yang, R. Verba, V. Tiberkevich, T. Schneider, A. Smith, Z. Duan, B. Youngblood, K. Lenz, J. Lindner, A.N. Slavin, I.N. Krivorotov. Reduction of phase noise in nanowire spin orbit torque oscillators. Sci. Rep. 5, 16942 (2015). https://doi.org/10.1038/srep16942

A. Slavin, V. Tiberkevich, Nonlinear auto-oscillator theory of microwave generation by spin-polarized current. IEEE Trans. Magn. 45, 1875 (2009). https://doi.org/10.1109/TMAG.2008.2009935

F. Sanches, V. Tiberkevich, K.Y. Guslienko, J. Sinha, M. Hayashi, O. Prokopenko, A.N. Slavin. Current-driven gyrotropic mode of a magnetic vortex as a nonisochronous auto-oscillator. Phys. Rev. B 89, 140410 (2014). https://doi.org/10.1103/PhysRevB.89.140410

O. Prokopenko, E. Bankowski, T. Meitzler, V. Tiberkevich, A. Slavin. Spin-torque nano-oscillator as a microwave signal source. IEEE Magn. Lett. 2, 3000104 (2011). https://doi.org/10.1109/LMAG.2010.2102007

O.R. Sulymenko, O.V. Prokopenko, V.S. Tiberkevich, A.N. Slavin, B.A. Ivanov, R.S. Khymyn. Terahertz-frequency spin Hall auto-oscillator based on a canted antiferromagnet. Phys. Rev. Appl. 8, 064007 (2017). https://doi.org/10.1103/PhysRevApplied.8.064007

G.E. Rowlands, I.N. Krivorotov. Magnetization dynamics in a dual free-layer spin-torque nano-oscillator. Phys. Rev. B 86, 094425 (2012). https://doi.org/10.1103/PhysRevB.86.094425

T. Moriyama, G. Finocchio, M. Carpentieri, B. Azzerboni, D.C. Ralph, R.A. Buhrman. Phase locking and frequency doubling in spin-transfer-torque oscillators with two coupled free layers. Phys. Rev. B 86, 060411(R) (2012). https://doi.org/10.1103/PhysRevB.86.060411

O.V. Prokopenko, I.N. Krivorotov, E.N. Bankowski, T.J. Meitzler, V.S. Tiberkevich, A.N. Slavin. Hysteresis regime in the operation of a dual-free-layer spin-torque nano-oscillator with out-of-plane counter-precessing magnetic moments. J. Appl. Phys. 114, 173904 (2013). https://doi.org/10.1063/1.4828866

A.A. Tulapurkar, Y. Suzuki, A. Fukushima, H. Kubota, H. Maehara, K. Tsunekawa, D.D. Djayaprawira, N. Watanabe, S. Yuasa. Spin-torque diode effect in magnetic tunnel junctions. Nature 438, 339 (2005). https://doi.org/10.1038/nature04207

O.V. Prokopenko, I.N. Krivorotov, E. Bankowski, T. Meitzler, S. Jaroch, V.S. Tiberkevich, A.N. Slavin. Spin-torque microwave detector with out-of-plane precessing magnetic moment. J. Appl. Phys. 111, 123904 (2012). https://doi.org/10.1063/1.4729301

O. Prokopenko, G. Melkov, E. Bankowski, T. Meitzler, V. Tiberkevich, A. Slavin, Noise properties of a resonance-type spin-torque microwave detector. Appl. Phys. Lett. 99, 032507 (2011). https://doi.org/10.1063/1.3612917

O.V. Prokopenko, E. Bankowski, T. Meitzler, V.S. Tiberkevich, A.N. Slavin. Influence of temperature on the performance of a spin-torque microwave detector. IEEE Trans. Magn. 48, 3807 (2012). https://doi.org/10.1109/TMAG.2012.2197853

O.V. Prokopenko, I.N. Krivorotov, T.J. Meitzler, E. Bankowski, V.S. Tiberkevich, A.N. Slavin. Spin-torque microwave detectors, In Magnonics. Topics in Applied Physics, vol 125, ed. by S. Demokritov, A. Slavin (Springer, Berlin, 2013), p. 143. https://doi.org/10.1007/978-3-642-30247-3_11

O.V. Prokopenko, A.N. Slavin. Microwave detectors based on the spin-torque diode effect. Low Temp. Phys. 41, 353 (2015). https://doi.org/10.1063/1.4919373

S. Louis, O. Sulymenko, V. Tiberkevich, J. Li, D. Aloi, O. Prokopenko, I. Krivorotov, E. Bankowski, T. Meitzler, A. Slavin. Ultra-fast wide band spectrum analyzer based on a rapidly tuned spin-torque nano-oscillator. Appl. Phys. Lett. 113, 112401 (2018). https://doi.org/10.1063/1.5044435

V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono, Y. Tserkovnyak. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018). https://doi.org/10.1103/RevModPhys.90.015005

E.V. Gomonay, V.M. Loktev. Spintronics of antiferromagnetic systems. Low Temp. Phys. 40, 17 (2014). https://doi.org/10.1063/1.4862467

R. Khymyn, I. Lisenkov, V. Tiberkevich, B.A. Ivanov, A. Slavin. Antiferromagnetic THz-frequency Josephson-like oscillator driven by spin current. Sci. Rep. 7, 43705 (2017). https://doi.org/10.1038/srep43705

O.R. Sulymenko, O.V. Prokopenko, V.S. Tyberkevych, A.N. Slavin. Terahertz-frequency signal source based on an antiferromagnetic tunnel junction. IEEE Magn. Lett. 9, 3104605 (2018). https://doi.org/10.1109/LMAG.2018.2852291

R. Khymyn, I. Lisenkov, J. Voorheis, O. Sulymenko, O. Prokopenko, V. Tiberkevich, J. Akerman, A. Slavin. Ultra-fast artificial neuron: generation of picosecondduration spikes in a current-driven antiferromagnetic auto-oscillator. Sci. Rep. 8, 15727 (2018). https://doi.org/10.1038/s41598-018-33697-0

O. Sulymenko, O. Prokopenko, I. Lisenkov, J. ? Akerman, V. Tyberkevych, A.N. Slavin, R. Khymyn. Ultra-fast logic devices using artificial "neurons" based on antiferromagnetic pulse generators. J. Appl. Phys. 124, 152115 (2018). https://doi.org/10.1063/1.5042348

S. Miwa, M. Suzuki, M. Tsujikawa, T. Nozaki, T. Nakamura, M. Shirai, S. Yuasa, Y. Suzuki. Perpendicular magnetic anisotropy and its electric-field-induced change at metal-dielectric interfaces. J. Phys. D: Appl. Phys. 52, 063001 (2018). https://doi.org/10.1088/1361-6463/aaef18

T. Nozaki,T. Yamamoto, S. Miwa, M. Tsujikawa, M. Shirai, S. Yuasa, Y. Suzuki. Recent progress in the voltage-controlled magnetic anisotropy effect and the challenges faced in developing voltage-torque MRAM. Micromachines 10, 327 (2019). https://doi.org/10.3390/mi10050327

R. Verba, M. Carpentieri, G. Finocchio, V. Tiberkevich, A. Slavin. Parametric excitation and amplification of spin waves in ultrathin ferromagnetic nanowires by microwave electric field, In Spin wave confinement: Propagating waves (2nd edition), ed. by S.O. Demokritov (Pan Stanford Publishing Pte. Ltd., Singapore, 2017), p. 385. https://doi.org/10.1201/9781315110820-14

Y.-J. Chen, H.K. Lee, R. Verba, J.A. Katine, I. Barsukov, V. Tiberkevich, J.Q. Xiao, A.N. Slavin, I.N. Krivorotov. Parametric resonance of magnetization excited by electric field. Nano Lett. 17, 572 (2017). https://doi.org/10.1021/acs.nanolett.6b04725

R. Verba, M. Carpentieri, Y.-J. Chen, I.N. Krivorotov, G. Finocchio, V. Tiberkevich, A. Slavin. Correction of phase errors in a spin-wave transmission line by nonadiabatic parametric pumping. Phys. Rev. Appl. 11, 054040 (2019). https://doi.org/10.1103/PhysRevApplied.11.054040

G. Gubbiotti, S. Tacchi, M. Madami, G. Carlotti, A.O. Adeyeye, M. Kostylev. Brillouin light scattering studies of planar metallic magnonic crystals. J. Phys. D: Appl. Phys. 43, 264003 (2010). https://doi.org/10.1088/0022-3727/43/26/264003

B. Lenk, H. Ulrichs, F. Garbs, M. M?unzenberg. The building blocks of magnonics. Phys. Rep. 507, 107 (2011). https://doi.org/10.1016/j.physrep.2011.06.003

M. Krawczyk, D. Grundler. Review and prospects of magnonic crystals and devices with reprogrammable band structure. J. Phys. Condens. Matter 26, 123202 (2014). https://doi.org/10.1088/0953-8984/26/12/123202

A.V. Chumak, V.I. Vasyuchka, A.A. Serga, B. Hillebrands. Magnon spintronics. Nat. Phys. 11, 453 (2015). https://doi.org/10.1038/nphys3347

A.V. Chumak, A.D. Karenowska, A.A. Serga, B. Hillebrands. The dynamic magnonic crystal: New horizons in artificial crystal based signal processing. In: S.O. Demokritov, A.N. Slavin (eds.) Topics in Applied Physics, Vol. 125: Magnonics From Fundamentals to Applications (Springer, 2013), p. 243. https://doi.org/10.1007/978-3-642-30247-3_17

A.V. Chumak, A.A. Serga, B. Hillebrands. Magnonic crystals for data processing. J. Phys. D: Appl. Phys. 50, 244001 (2017). https://doi.org/10.1088/1361-6463/aa6a65

A.V. Chumak, A.A. Serga, B. Hillebrands, M.P. Kostylev. Scattering of backward spin waves in a one-dimensional magnonic crystal. Appl. Phys. Lett. 93, 022508 (2008). https://doi.org/10.1063/1.2963027

A.V. Chumak, A.A. Serga, S. Wolff, B. Hillebrands, M.P. Kostylev. Design and optimization of one-dimensional ferrite-film based magnonic crystal. J. Appl. Phys. 105, 083906 (2009). https://doi.org/10.1063/1.3098258

A.V Chumak, A.A. Serga, S. Wolff, B. Hillebrands, M.P. Kostylev. Scattering of surface and volume spin waves in a magnonic crystal, Appl. Phys. Lett. 94, 172511 (2009). https://doi.org/10.1063/1.3127227

A.D. Karenowska, A.V. Chumak, A.A. Serga, J.F. Gregg, B. Hillebrands. Magnonic crystal based forced dominant wavenumber selection in a spin-wave active ring. Appl. Phys. Lett. 96, 082505 (2010). https://doi.org/10.1063/1.3318258

A.D. Karenowska, A.V. Chumak, A.A. Serga, J.F. Gregg, B. Hillebrands. Employing magnonic crystals to dictate the characteristics of auto-oscillatory spin-wave systems. J. Phys.: Conf. Ser. 303, 012007 (2011). https://doi.org/10.1088/1742-6596/303/1/012007

A.V. Chumak, V.I. Vasyuchka, A.A. Serga, M.P. Kostylev, V.S. Tiberkevich, B. Hillebrands. Storage-recovery phenomenon in magnonic crystal. Phys. Rev. Lett. 108, 257207 (2012). https://doi.org/10.1103/PhysRevLett.108.257207

A.V. Chumak, A.A. Serga, B. Hillebrands. Magnon transistors for all-magnon data processing. Nat. Commun. 5, 4700 (2014). https://doi.org/10.1038/ncomms5700

A.V. Chumak, P. Pirro, A.A. Serga, M.P. Kostylev, R.L. Stamps, H. Schultheiss, K. Vogt, S.J. Hermsdoerfer, B. Laegel, P.A. Beck, B. Hillebrands. Spin-wave propagation in a micro-structured magnonic crystal. Appl. Phys. Lett. 95, 262508 (2009). https://doi.org/10.1063/1.3279138

F. Ciubotaru, A.V. Chumak, N.Yu. Grigoryeva, A.A. Serga, B. Hillebrands. Magnonic band gap design by the edge modulation of micro-sized waveguides. J. Phys. D: Appl. Phys. 45, 255002 (2012). https://doi.org/10.1088/0022-3727/45/25/255002

A.A. Nikitin, A.B. Ustinov, A.A. Semenov, A.V. Chumak, A.A. Serga, V.I. Vasuchka, E. L?ahderanta, B.A. Kalinikos, B. Hillebrands. A spin-wave logic gate based on a width-modulated dynamic magnonic crystal. Appl. Phys. Lett. 106, 102405 (2015). https://doi.org/10.1063/1.4914506

B. Obry, P. Pirro, T. Br?acher, A.V. Chumak, J. Osten, F. Ciubotaru, A.A. Serga, J. Fassbender, B. Hillebrands. A micro-structured ion-implanted magnonic crystal. Appl. Phys. Lett. 102, 202403 (2013). https://doi.org/10.1063/1.4807721

F. Ciubotaru, A.V. Chumak, B. Obry, A.A. Serga, B. Hillebrands. Magnonic band gaps in wave-guides with a periodic variation of the saturation magnetization. Phys. Rev. B 88, 134406 (2013). https://doi.org/10.1103/PhysRevB.88.134406

A.V. Chumak, T. Neumann, A.A. Serga, B. Hillebrands, M.P. Kostylev. A current-controlled, dynamic magnonic crystal. J. Phys. D: Appl. Phys. 42, 205005 (2009). https://doi.org/10.1088/0022-3727/42/20/205005

A.V. Chumak, V.S. Tiberkevich, A.D. Karenowska, A.A. Serga, J.F. Gregg, A.N. Slavin, B. Hillebrands. All-linear time reversal by a dynamic artificial crystal. Nat. Commun. 1, 141 (2010). https://doi.org/10.1038/ncomms1142

A.D. Karenowska, J.F. Gregg, V.S. Tiberkevich, A.N. Slavin, A.V. Chumak, A.A. Serga, B. Hillebrands. Oscillatory energy exchange between waves coupled by a dynamic artificial crystal. Phys. Rev. Lett. 108, 015505 (2012). https://doi.org/10.1103/PhysRevLett.108.015505

A.V. Chumak, P. Dhagat, A. Jander, A.A. Serga, B. Hillebrands. Reverse Doppler effect of magnons with negative group velocity scattered from a moving Bragg grating. Phys. Rev. B 81, 140404(R) (2010). https://doi.org/10.1103/PhysRevB.81.140404

O.V. Dobrovolskiy, R. Sachser, T. Br?acher, T. B?ottcher, V.V. Kruglyak, R.V. Vovk, V.A. Shklovskij, M. Huth, B. Hillebrands, A.V. Chumak. Magnon-fluxon interaction in a ferromagnet/superconductor heterostructure. Nat. Phys. 15, 477 (2019). https://doi.org/10.1038/s41567-019-0428-5

T. Schneider, A.A. Serga, A.V. Chumak, B. Hillebrands, R.L. Stamps, M.P. Kostylev. Spin-wave tunneling through a mechanical gap. Europhys. Lett. 90, 27003 (2010). https://doi.org/10.1209/0295-5075/90/27003

M.P. Kostylev, A.A. Serga, T. Schneider, T. Neumann, B. Leven, B. Hillebrands, R.L. Stamps. Resonant and nonresonant scattering of dipole-dominated spin waves from a region of inhomogeneous magnetic field in a ferromagnetic film. Phys. Rev. B 76, 184419 (2007). https://doi.org/10.1103/PhysRevB.76.184419

T. Neumann, A.A. Serga, B. Hillebrands, M.P. Kostylev. Frequency-dependent reflection of spin waves from a magnetic inhomogeneity induced by a surface direct current. Appl. Phys. Lett. 94, 042503 (2009). https://doi.org/10.1063/1.3074501

A.A. Serga, T. Neumann, A.V. Chumak, B. Hillebrands. Generation of spin-wave pulse trains by current-controlled magnetic mirrors. Appl. Phys. Lett. 94, 112501 (2009). https://doi.org/10.1063/1.3098407

M. Mohseni, R. Verba, T. Br?acher, Q. Wang, D.A. Bozhko, B. Hillebrands, P. Pirro. Backscattering immunity of dipole-exchange magnetostatic surface spin waves. Phys. Rev. Lett. 122, 197201 (2019). https://doi.org/10.1103/PhysRevLett.122.197201

Q. Wang, A.V. Chumak, L. Jin, H. Zhang, B. Hillebrands, Z. Zhong. Voltage-controlled nanoscale reconfigurable magnonic crystal. Phys. Rev. B 95, 134433 (2017). https://doi.org/10.1103/PhysRevB.95.134433

G.N. Kakazei, X.M. Liu, J. Ding, A.O. Adeyeye. Ni80Fe20 film with periodically modulated thickness as a recon- figurable one-dimensional magnonic crystal. Appl. Phys. Lett. 104, 042403 (2014). https://doi.org/10.1063/1.4863508

R.G. Kryshtal, A.V. Medved. Nonreciprocity of spin waves in magnonic crystals created by surface acoustic waves in structures with yttrium iron garnet. J. Magn. Magn. Mater. 395, 180 (2015). https://doi.org/10.1016/j.jmmm.2015.07.086

R.G. Kryshtal, A.V. Medved. Surface acoustic wave in yttrium iron garnet as tunable magnonic crystals for sensors and signal processing applications. Appl. Phys. Lett. 100, 192410 (2012). https://doi.org/10.1063/1.4714507

D.D. Stancil, B.E. Henty, A.G. Cepni, J.P. Van't Hof. Observation of an inverse Doppler shift from left-handed dipolar spin waves. Phys. Rev. B. 74, 060404(R) (2006). https://doi.org/10.1103/PhysRevB.74.060404

B.M. Lebed', A.V. Nikiforov, S.V. Yakovlev, I.A. Yakovlev. Spin-wave scattering from the magnetic vortical lattice in the high-T superconductor-ferrite film structure. Sov. Phys. Solid State 34 351 (1992).

N.I. Polzikova Resonant interaction of magnetostatic waves with a lattice of magnetic flux vortices in a superconductor. Tech. Phys. Lett. 19, 712 (1993).

T. Baba. Slow light in photonic crystals. Nat. Photon. 2, 465 (2008). https://doi.org/10.1038/nphoton.2008.146

A.A. Serga, A.V. Chumak, A. Andr?e, G.A. Melkov, A.N. Slavin, S.O. Demokritov, B. Hillebrands. Parametrically stimulated recovery of microwave signal stored in standing spin-wave modes of a magnetic film. Phys. Rev. Lett. 99, 227202 (2007). https://doi.org/10.1103/PhysRevLett.99.227202

G.A. Melkov, Y.V. Koblyanskiy, R.A. Slipets, A.V. Talalaevskij, A.N. Slavin. Nonlinear interactions of spin waves with parametric pumping in permalloy metal films. Phys. Rev. B 79, 134411 (2009). https://doi.org/10.1103/PhysRevB.79.134411

S. Sch?afer, V. Kegel, A.A. Serga, B. Hillebrands, M.P. Kostylev. Variable damping and coherence in a high-density magnon gas. Phys. Rev. B 83, 184407 (2011). https://doi.org/10.1103/PhysRevB.83.184407

Y. Kobljanskyj, G. Melkov, K. Guslienko, V. Novosad, S.D. Bader, M. Kostylev, A. Slavin. Nano-structured magnetic metamaterial with enhanced nonlinear properties. Sci. Rep. 2, 478 (2012). https://doi.org/10.1038/srep00478

K.Yu. Guslienko, Yu. Kobljanskyj, G. Melkov, V. Novosad, S.D. Bader, M. Kostylev, A. Slavin. Nonlinear spin waves in two-dimensional arrays of magnetic nanodots Ultrafast Magnetism I Book Series: Springer Proceedings in Physics 159 (Springer, 2015), p. 206. https://doi.org/10.1007/978-3-319-07743-7_65

Y. Kobljanskyj, D. Slobodianiuk, G. Melkov, K. Guslienko, V. Novosad, S. Bader, M. Kostylev, A. Slavin. Nonlinear dynamic properties of two-dimensional arrays of magnetic nanodots. Handbook of Nanomagnetism: Applications and Tools (Pan Stanford Publishing, 2015), p. 97. https://doi.org/10.1201/b18942-6

J.D. Adam. Analog signal processing with microwave magnetics. Proc. IEEE 76, 159 (1988). https://doi.org/10.1109/5.4392

I.V. Zavislyak, M.A. Popov. Microwave properties and applications of Yttrium Iron Garnet (YIG) films: Current state of art and perspectives, In B.D. Volkerts (ed.) Yttrium: Compounds, Production and Applications (Nova Science Publishers, Inc., 2009), p. 87.

Y. Khivintsev, M. Ranjbar, D. Gutierrez, H. Chiang, A. Kozhevnikov, Y. Filimonov, A. Khitun. Prime factorization using magnonic holographic devices. J. Appl. Phys. 120, 123901 (2016). https://doi.org/10.1063/1.4962740

T. Br?acher, P. Pirro. An analog magnon adder for all-magnonic neurons. J. Appl. Phys. 124, 152119 (2018). https://doi.org/10.1063/1.5042417

G. Csaba, A. Papp, W. Porod. Spin-wave based realization of optical computing primitives. J. Appl. Phys. 115, 17C741 (2014). https://doi.org/10.1063/1.4868921

R. Hertel, W. Wulfhekel, J. Kirschner. Domain-wall induced phase shifts in spin waves. Phys. Rev. Lett. 93, 257202 (2004). https://doi.org/10.1103/PhysRevLett.93.257202

M.P. Kostylev, A.A. Serga, T. Schneider, B. Leven, B. Hillebrands. Spin-wave logical gates. Appl. Phys. Lett. 87, 153501 (2005). https://doi.org/10.1063/1.2089147

T. Schneider, A.A. Serga, B. Leven, B. Hillebrands, R.L. Stamps, M.P. Kostylev. Realization of spin-wave logic gates. Appl. Phys. Lett. 92, 022505 (2008). https://doi.org/10.1063/1.2834714

R.L. Stamps, S. Breitkreutz, J. Akerman, A.V. Chumak, Y. Otani, G.E.W. Bauer, J.-U. Thiele, M. Bowen, S.A. Majetich, M. Kl?aui. Magnon spintronics in the "The 2014 magnetism roadmap". J. Phys. D: Appl. Phys. 47, 333001 (2014). https://doi.org/10.1088/0022-3727/47/33/333001

K-S. Lee, S-K. Kim. Conceptual design of spin-wave logic gates based on a Mach-Zehnder-type spin-wave interferometer for universal logic functions. J. Appl. Phys. 104, 053909 (2008). https://doi.org/10.1063/1.2975235

Q. Wang, R. Verba, T. Br?acher, P. Pirro, A.V. Chumak. Integrated magnonic half-adder. arXiv:1902.02855 (2019).

A.V. Sadovnikov, E.N. Beginin, S.E. Sheshukova, D.V. Romanenko, Yu.P. Sharaevskii, S.A. Nikitov. Directional multimode coupler for planar magnonics: Side-coupled magnetic stripes. Appl. Phys. Lett. 107, 202405 (2015). https://doi.org/10.1063/1.4936207

Q. Wang, P. Pirro, R. Verba, A. Slavin, B. Hillebrands, A.V. Chumak. Reconfigurable nanoscale spin-wave directional coupler. Sci. Adv. 4, e1701517 (2018). https://doi.org/10.1126/sciadv.1701517

Q. Wang, M. Kewenig, M. Schneider, R. Verba, B. Heinz, M. Geilen, M. Mohseni, B. L?agel, F. Ciubotaru, C. Adelmann, C. Dubs, P. Pirro, T. Br?acher, A.V. Chumak. Realization of a nanoscale magnonic directional coupler for all-magnon circuits. arXiv:1905.12353 (2019).

A. Khitun, M. Bao, K.L. Wang. Magnonic logic circuits. J. Phys. D: Appl. Phys. 43, 264005 (2010). https://doi.org/10.1088/0022-3727/43/26/264005

S. Klingler, P. Pirro, T. Br?acher, B. Leven, B. Hillebrands, A.V. Chumak. Design of a spin-wave majority gate employing mode selection. Appl. Phys. Lett. 105, 152410 (2014). https://doi.org/10.1063/1.4898042

S. Klingler, P. Pirro, T. Br?acher, B. Leven, B. Hillebrands, A.V. Chumak. Spin-wave logic devices based on isotropic forward volume magnetostatic waves. Appl. Phys. Lett. 106, 212406 (2015). https://doi.org/10.1063/1.4921850

T. Fischer, M. Kewenig, D.A. Bozhko, A.A. Serga, I.I. Syvorotka, F. Ciubotaru, C. Adelmann, B. Hillebrands, A.V. Chumak. Experimental prototype of a spin-wave majority gate. Appl. Phys. Lett. 110, 152401 (2017). https://doi.org/10.1063/1.4979840

Q. Wang, B. Heinz, R. Verba, M. Kewenig, P. Pirro, M. Schneider, T. Meyer, B. L?agel, C. Dubs, T. Br?acher, A.V. Chumak. Spin pinning and spin-wave dispersion in nanoscopic ferromagnetic waveguides. Phys. Rev. Lett. 122, 247202 (2019). https://doi.org/10.1103/PhysRevLett.122.247202

C. Liu, J. Chen, T. Liu, F. Heimbach, H. Yu, Y. Xiao, J. Hu, M. Liu, H. Chang, T. Stueckler, S. Tu, Y. Zhang, Y. Zhang, P. Gao, Z. Liao, D. Yu, K. Xia, N. Lei,W. Zhao, M. Wu. Long-distance propagation of short-wavelength spin waves. Nat. Commun. 9, 738 (2018). https://doi.org/10.1038/s41467-018-03199-8

Published
2019-11-01
How to Cite
Prokopenko, O., Bozhko, D., Tyberkevych, V., Chumak, A., Vasyuchka, V., Serga, A., Dzyapko, O., Verba, R., Talalaevskij, A., Slobodianiuk, D., Kobljanskyj, Y., Moiseienko, V., Sholom, S., & Malyshev, V. (2019). Recent Trends in Microwave Magnetism and Superconductivity. Ukrainian Journal of Physics, 64(10), 888. https://doi.org/10.15407/ujpe64.10.888
Section
Physics of magnetic phenomena and physics of ferroics

Most read articles by the same author(s)