Magnon-Plasmon Polaritons in the Layered Structure Metal–Ferrite with a Periodic Stripe-Like Structure of Domains

Authors

  • I. V. Zavislyak Taras Shevchenko National University of Kyiv, Faculty of Radiophysics, Electronics, and Computer Systems
  • H. L. Chumak Taras Shevchenko National University of Kyiv, Faculty of Radiophysics, Electronics, and Computer Systems

DOI:

https://doi.org/10.15407/ujpe64.10.956

Keywords:

magnon-plasmon polariton, ferrite, periodic stripe-like domain structure

Abstract

The theory of magnon-plasmon polaritons in the layered structure metal–ferrite–air is presented. It is assumed that the ferrite has an easy-axis anisotropy, and, in the absence of a magnetization field, it is in an unsaturated state with a periodic stripe-like domain structure. A dispersion dependence for magnon-plasmon polaritons and corresponding microwave field distributions in a waveguide structure based on BaFe12O19-type hexaferrite are found. Effects associated with the hybridization of surface plasmon polaritons and domain resonances in the ferrite layer are analyzed. General characteristics of magnon-plasmon-polariton millimeter-wave resonators are discussed.

References

A. Sommerfeld. Fortpflanzung elektrodynamischer Wellen an einem zylinrischen Leiter. Ann. Phys. Chem. 67, 233 (1899). https://doi.org/10.1002/andp.18993030202

J. Zenneck. Uber die Fortpflanzung ebener electromagnetischer Wellen an einer ebenen Leiterflache und ihre Beziehung zur drahtlosen Telegraphie. Ann. Phys. 23, 846 (1907). https://doi.org/10.1002/andp.19073281003

L.A. Weinstein. Electromagnetic Waves (Radio i Svyaz, 1988) (in Russian).

M.B. Vinogradova, O.V. Rudenko, A.P. Sukhorukov. Theory of Waves (Nauka, 1990) (in Russian).

S.F. Mahmoud. Electromagnetic Waveguides: Theory and Applications (Short Run Press, 1991). https://doi.org/10.1049/PBEW032E

Yu.M. Herbstein, M.A. Merkulov. A new type of surface vibrations at the metal-insulator interface in the system prism-insulator-metal system. Fiz. Tverd. Tela 17, 1501 (1975) (in Russian).

W. Chen. Surface EM waves and spectroscopy in ATR configuration. Dissertation (Philadelphia, 1977).

Surface Polaritons: Electromagnetic Waves at Surfaces and Interfaces. Edited by V.M. Agranovich, D.L. Mills (North-Holland, 1982).

G.A. Melkov, Y.V. Egorov, O.M. Ivanjuta, V.Y. Malyshev, H.K. Zeng, K.H. Wu, J.Y. Juang. HTS surface wave resonator. J. Supercond. 13, 95 (2000). https://doi.org/10.1023/A:1007734428003

G.A. Melkov, Y.V. Egorov. Swihart waves and surface plasmons in a parallel-plate superconducting transmission line. Low Temp. Phys. 26, 108 (2000). https://doi.org/10.1063/1.593873

A.M. Klushin, G.A. Melkov, O.M. Ivanyuta, K. Numssen, M. Siegel. Irradiation of multi-junction Josephson arrays embedded in a surface wave resonator. Phys. C 305, 372 (2002). https://doi.org/10.1016/S0921-4534(02)00656-1

O.M. Ivanyuta, O.V. Prokopenko, V.M. Raksha, A.M. Klushin. Microwave detection using Josephson junction arrays integrated in a resonator. Phys. Status Solidi C 2, 1688 (2005). https://doi.org/10.1002/pssc.200460812

O.M. Ivanyuta, O.V. Prokopenko, Ya.I. Kishenko, V.M. Raksha, A.M. Klushin. The effect of the external magnetic field on the current-voltage characteristic of HTS Josephson junction arrays. J. Low Temp. Phys. 139, 97 (2005). https://doi.org/10.1007/s10909-005-3915-2

S.A. Maier. Plasmonics: Fundamentals and Applications (Springer, 2007). https://doi.org/10.1007/0-387-37825-1

F. Omeis. Theorical and Experimental Study of Plasmonic Metamaterials for Infrared Application. Thesis (Universit?e Clermont Auvergne, 2017).

E.A. Vinogradov. Polaritons of semiconductor microcavity. Usp. Fiz. Nauk 172, 1371 (2002) (in Russian). https://doi.org/10.3367/UFNr.0172.200212b.1371

B.A. Knyazev, A.V. Kuzmin. Surface electromagnetic waves: from the visible range to microwaves. Vestn. Novosib. Gos. Univ. Ser. Fiz. 2, 108 (2007) (in Russian).

R.S. Anwar, Huan Sheng Ning, Ling Feng Mao. Recent advancements in surface plasmon polaritons-plasmonics in subwavelength structures at microwave and terahertz regime Digit. Commun. Netw. (2017). https://doi.org/10.1016/j.dcan.2017.08.004

G.A. Melkov, A.V. Prokopenko, V.N. Raksha. Rarefaction of the natural oscillation spectrum in the surface wave resonator. Radioelektronika 1, 29 (2004) (in Russian).

D.G. Sannikov, D.I. Sementsov. Surface polaritons at the interface of magnetized semiconductor and insulator. Fiz. Tverd. Tela 55, 2209 (2013) (in Russian). https://doi.org/10.1134/S1063783413110218

A.G. Gurevich. Magnetic Resonance in Ferrites and Antiferromagnets (Nauka, 1973) (in Russian).

V.V. Danylov, I.V. Zavyslyak, O.Yu. Nechyporuk. Spin-Wave Electrodynamics (Kyiv University, 2008) (in Ukrainian).

D.B. Nicholson. Hexagonal ferrites for millimeter-wave applications. Hewlet-Packard J. 41, 59 (1990).

Published

2019-11-01

How to Cite

Zavislyak, I. V., & Chumak, H. L. (2019). Magnon-Plasmon Polaritons in the Layered Structure Metal–Ferrite with a Periodic Stripe-Like Structure of Domains. Ukrainian Journal of Physics, 64(10), 956. https://doi.org/10.15407/ujpe64.10.956

Issue

Section

Physics of magnetic phenomena and physics of ferroics