On the Classification of Symmetry Reductions and Invariant Solutions for the Euler–Lagrange–Born–Infeld Equation

Authors

  • V. M. Fedorchuk Institute of Mathematics, Pedagogical University, Ya.S. Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, Nat. Acad. of Sci. of Ukraine
  • V. I. Fedorchuk Ya.S. Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe64.12.1103

Keywords:

structural properties of Lie argebras, nonsingular manifolds, classification of symmetry reductions, invariant solutions, Poincar´e group P(1, 4), Euler–Lagrange–Born–Infeld equation

Abstract

We study a connection between the structural properties of the low-dimension (dimL ≤ 3) nonconjugate subalgebras of the Lie argebra of the generalized Poincar´e group P(1,4) and the results of symmetry reductions for the Euler–Lagrange–Born–Infeld equation. We have performed the classification of nonsingular manifolds in the space M(1 , 3 ) × R(u) invariant with respect to three-dimensional nonconjugate subalgebras of the Lie algebra of the group P(1,4). The results are used for the classification of symmetry reductions and invariant solutions of the Euler–Lagrange–Born–Infeld equation.

References

S. Lie. Zur allgemeinen Theorie der partiellen Differentialgleichungen beliebiger Ordnung. Leipz. Berichte, I. 53 (Reprinted in S. Lie. Gesammelte Abhandlungen, 4, Paper IX) (1895).

L.V. Ovsiannikov. Group Analysis of Differential Equations (Academic Press, 1982) [ISBN: 0-12-531680-1]. https://doi.org/10.1016/B978-0-12-531680-4.50012-5

P.J. Olver. Applications of Lie Groups to Differential Equations (Springer, 1986). https://doi.org/10.1007/978-1-4684-0274-2

A.M. Grundland, J. Harnad, P. Winternitz. Symmetry reduction for nonlinear relativistically invariant equations. J. Math. Phys. 25, 791 (1984). https://doi.org/10.1063/1.526224

V.M. Fedorchuk, I.M. Fedorchuk, O.S. Leibov. Reduction of the Born-Infeld, the Monge-Ampere and the eikonal equation to linear equations. Dokl. Аkad. Nauk Ukr., No. 11, 24 (1991).

V. Fedorchuk. Symmetry reduction and exact solutions of the Euler-Lagrange-Born-Infeld, the multidimensional Monge-Amp'ere and the eikonal equations. J. Nonlinear Math. Phys. 2, 329 (1995). https://doi.org/10.2991/jnmp.1995.2.3-4.13

V.M. Fedorchuk. Symmetry reduction and some exact solutions of a nonlinear five-dimensional wave equation. Ukr. Math. J. 48, 636 (1996). https://doi.org/10.1007/BF02390625

A.G. Nikitin, O. Kuriksha. Group analysis of equations of axion electrodynamics. In: Group Analysis of Differential Equations and Integrable Systems (University of Cyprus, 2011), pp. 152-163.

A.G.Nikitin, O. Kuriksha. Invariant solutions for equations of axion electrodynamics. Commun. Nonlinear Sci. Numer. Simul. 17, 4585 (2012). https://doi.org/10.1016/j.cnsns.2012.04.009

V. Fedorchuk, V. Fedorchuk. On classification of symmetry reductions for the eikonal equation. Symmetry 8 (6), 51 (2016). https://doi.org/10.3390/sym8060051

A.M. Grundland, A. Hariton. Algebraic aspects of the supersymmetric minimal surface equation. Symmetry 9 (12), 318 (2017). https://doi.org/10.3390/sym9120318

V. Fedorchuk, V. Fedorchuk. On classification of symmetry reductions for partial differential equations. In: Collection of the Scientific Works Dedicated to the 80th Anniversary of B.J. Ptashnyk (Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of NAS of Ukraine, 2017), pp. 241-255 [ISBN 978-966-02-8315-2].

V. Fedorchuk, V. Fedorchuk. Classification of Symmetry Reductions for the Eikonal Equation (Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of National Academy of Sciences of Ukraine, 2018) [ISBN:978-966-02-8468-5].

W.I. Fushchich, A.G. Nikitin. Reduction of the representations of the generalized Poincar'e algebra by the Galilei algebra. J. Phys. A: Math. and Gen. 13, 2319 (1980). https://doi.org/10.1088/0305-4470/13/7/015

V.I. Fushchich, N.I. Serov. Some exact solutions of the multidimensional nonlinear Euler-Lagrange equation. Dokl. Akad. Nauk SSSR 278, 847 (1984) (in Russian).

V.M. Fedorchuk. Splitting subalgebras of the Lie algebra of the generalized Poincar'e group P(1, 4). Ukr. Math. J. 31, 554 (1979). https://doi.org/10.1007/BF01092537

V.M. Fedorchuk. Nonsplitting subalgebras of the Lie algebra of the generalized Poincar'e group P(1, 4). Ukr. Math. J. 33, 535 (1981). https://doi.org/10.1007/BF01085898

W.I. Fushchich, A.F. Barannik, L.F. Barannik, V.M. Fedorchuk. Continuous subgroups of the Poincarr'e group P(1, 4). J. Phys. A: Math. and Gen. 18, 2893 (1985). https://doi.org/10.1088/0305-4470/18/15/017

V.M. Fedorchuk, V.I. Fedorchuk. On classification of the low-dimension nonconjugate subalgebras of the Lie algebra of the Poincar'e group P(1, 4). Proc. of the Inst. of Math. of NAS of Ukraine 3, 302 (2006).

M. Born. On the quantum theory of electromagnetic field. Proc. Royal Soc. A 143, 410 (1934). https://doi.org/10.1098/rspa.1934.0010

M. Born, L. Infeld. Foundations of the new field theory. Proc. Royal Soc. A 144, 425 (1934). https://doi.org/10.1098/rspa.1934.0059

N.A. Chernikov. Born-Infeld equations in Einstein's unified field theory. Probl. Teor. Gravit. ' Element. Chast., 130 (1978) (in Russian).

M. K˜oiv, V. Rosenhaus. Family of two-dimensional Born-Infeld equations and a system of conservation laws. Eesti NSV Tead. Akad. Toimetised F¨u¨us. - Mat.(Izv. Akad. Nauk Est. SSR. Fizika, Matematika) 28, 187 (1979) (in Russian).

N.S. Shavokhina. Minimal surfaces and nonlinear electrodynamics. In: Selected Topics in Statistical Mechanics (World Sci. Publ., 1990).

Downloads

Published

2019-12-09

How to Cite

Fedorchuk, V. M., & Fedorchuk, V. I. (2019). On the Classification of Symmetry Reductions and Invariant Solutions for the Euler–Lagrange–Born–Infeld Equation. Ukrainian Journal of Physics, 64(12), 1103. https://doi.org/10.15407/ujpe64.12.1103

Issue

Section

Fields and elementary particles