Polarization of the Vacuum of the Quantized Spinor Field by a Topological Defect in the Two-Dimensional Space

Authors

  • Yu. A. Sitenko Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine
  • V. M. Gorkavenko Taras Shevchenko National University of Kyiv, Ukraine

DOI:

https://doi.org/10.15407/ujpe64.11.1069

Keywords:

vacuum polarization, vortex, current, magnetic flux

Abstract

The two-dimensional space with a topological defect is a transverse section of the three-dimensional space with an Abrikosov–Nielsen–Olesen vortex, i.e. a gauge-flux-carrying tube which is impenetrable for quantum matter. Charged spinor matter field is quantized in this section with the most general mathematically admissible boundary condition at the edge of the defect. We show that a current and a magnetic field are induced in the vacuum. The dependence of results on the boundary conditions is studied, and we find that the requirement of finiteness of the total induced vacuum magnetic flux removes an ambiguity in the choice of boundary conditions. The differences between the cases of massive and massless spinor matters are discussed.

References

Y. Aharonov, D. Bohm. Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485 (1959). https://doi.org/10.1103/PhysRev.115.485

M. Peshkin, A. Tonomura. The Aharonov-Bohm Effect (Springer, 1989). https://doi.org/10.1007/BFb0032076

I.V. Krive, A.S. Rozhavsky. Non-traditional Aharonov-Bohm effects in condensed matter. Int. J. Mod. Phys. B 6, 1255 (1992). https://doi.org/10.1142/S0217979292000657

A. Tonomura. The AB effect and its expanding applications. J. Phys. A: Math. Theor. 43, (2010) 354021. https://doi.org/10.1088/1751-8113/43/35/354021

A.A. Abrikosov. On the magnetic properties of superconductors of the second group. Sov. Phys. - JETP 5, 1174 (1957).

H.B. Nielsen, P. Olesen. Vortex-line models for dual strings. Nucl. Phys. B 61, 45 (1973). https://doi.org/10.1016/0550-3213(73)90350-7

R.P. Huebener. Magnetic Flux Structure in Superconductors (Springer, 1979). https://doi.org/10.1007/978-3-662-02305-1

M. Reed, B. Simon. Methods of Modern Mathematical Physics II. Fourier Analysis, Self-Adjointness (Academic Press, 1975).

D. Garfinkle. General relativistic strings. Phys. Rev. D 32, 1323 (1985). https://doi.org/10.1103/PhysRevD.32.1323

C.W. Misner, K.S. Thorne, J.A. Wheeler. Gravitation (W.H. Freeman, 1973).

G.V. Dunne. Topological Aspects of Low Dimensional Systems (Springer, 1999).

E.C. Marino. Quantum Field Theory Approach to Condensed Matter Physics (Cambridge Univ. Press, 2017). https://doi.org/10.1017/9781139696548

A.J. Niemi, G.W. Semenoff. Fermion number fractionization in quantum field theory. Phys. Rep. 135, 99 (1984). https://doi.org/10.1016/0370-1573(86)90167-5

Yu.A. Sitenko. On the electron charge fractionization in magnetic field with boundaries present. Sov. J. Nucl. Phys. 47, 184 (1988).

Yu.A. Sitenko. Electron-charge fractionization on surfaces of various geometry in an external magnetic field. Nucl. Phys. B 342, 655 (1990). https://doi.org/10.1016/0550-3213(90)90331-7

Yu.A. Sitenko. Geometry of the base manifold and fermion number fractionization. Phys. Lett. B 253, 138 (1991). https://doi.org/10.1016/0370-2693(91)91374-5

Yu.A. Sitenko. Self-adjointness of the Dirac Hamiltonian and fermion number fractionization in the background of a singular magnetic vortex. Phys. Lett. B 387, 334 (1996). https://doi.org/10.1016/0370-2693(96)01042-8

Yu.A. Sitenko. Self-adjointness of the Dirac Hamiltonian and vacuum quantum numbers induced by a singular external field. Phys. Atom. Nucl. 60, 2102 (1997); (E) 62, 1084 (1999).

Yu.A. Sitenko, D.G. Rakityansky. Quantum numbers of the theta vacuum in (2+1)-dimensional spinor electrodynamics: Charge and magnetic flux. Phys. Atom. Nucl. 60, 1497 (1997).

Yu.A. Sitenko. Effects of fermion vacuum polarization by a singular magnetic vortex: Zeta function and energy. Phys. Atom. Nucl. 62, 1056 (1999).

Yu.A. Sitenko. Polarization of a fermion vacuum by a singular magnetic vortex: Spin and angular momentum. Phys. Atom. Nucl. 62, 1767 (1999).

Yu.A. Sitenko. Induced vacuum condensates in the background of a singular magnetic vortex in 2+1-dimensional space-time. Phys. Rev. D 60, 125017 (1999). https://doi.org/10.1103/PhysRevD.60.125017

Yu.A. Sitenko. Chiral symmetry breaking as a consequence of nontrivial spatial topology. Mod. Phys. Lett. A 14, 701 (1999). https://doi.org/10.1142/S0217732399000742

Yu.A. Sitenko. Self-adjointness of the two-dimensional massless Dirac Hamiltonian and vacuum polarization effects in the background of a singular magnetic vortex. Annals Phys. 282, 167 (2000). https://doi.org/10.1006/aphy.2000.5999

P. Gornicki. Aharonov-Bohm effect and vacuum polarization. Annals Phys. 202, 271 (1990). https://doi.org/10.1016/0003-4916(90)90226-E

E.G. Flekkoy, J.M. Leinaas. Vacuum currents around a magnetic flux string. Int. J. Mod. Phys. A 6, 5327 (1991). https://doi.org/10.1142/S0217751X91002501

R.R. Parwani, A.S. Goldhaber. Decoupling in (2 + 1)-dimensional QED? Nucl. Phys. B 359, 483 (1991). https://doi.org/10.1016/0550-3213(91)90069-A

V.P. Frolov, E.M. Serebriany. Vacuum polarization in the gravitational field of a cosmic string. Phys. Rev. D 35, 3779 (1987). https://doi.org/10.1103/PhysRevD.35.3779

J.S. Dowker. Vacuum averages for arbitrary spin around a cosmic string. Phys. Rev. D 36, 3742 (1987). https://doi.org/10.1103/PhysRevD.36.3742

M.E.X. Guimaraes, B. Linet. Scalar Green's functions in an Euclidean space with a conical-type line singularity. Commun. Math. Phys. 165, 297 (1994). https://doi.org/10.1007/BF02099773

E.S. Moreira. Massive quantum fields in a conical background. Nucl. Phys. B 451, 365 (1995). https://doi.org/10.1016/0550-3213(95)00357-X

M. Bordag, K. Kirsten, S. Dowker. Heat-kernels and functional determinants on the generalized cone. Commun. Math. Phys. 182, 371 (1996). https://doi.org/10.1007/BF02517895

D. Iellici. Massive scalar field near a cosmic string. Class. Quantum Grav. 14, 3287 (1997). https://doi.org/10.1088/0264-9381/14/12/013

L. Sriramkumar. Fluctuations in the current and energy densities around a magnetic flux carrying cosmic string. Class. Quantum Grav. 18, 1015 (2001). https://doi.org/10.1088/0264-9381/18/6/304

J. Spinelly, E.R. Bezerra de Mello. Spinor Green function in higher-dimensional cosmic string space-time in the presence of magnetic flux. J. High Energy Phys. 09, 005 (2008). https://doi.org/10.1088/1126-6708/2008/09/005

E.R. Bezerra de Mello, V. Bezerra, A.A. Saharian, V.M. Bardeghyan. Fermionic current densities induced by magnetic flux in a conical space with a circular boundary. Phys. Rev. D 82, 085033 (2010). https://doi.org/10.1103/PhysRevD.82.085033

S. Bellucci, E.R. Bezerra de Mello, A.A. Saharian. Fermionic condensate in a conical space with a circular boundary and magnetic flux. Phys. Rev. D 83, 085017 (2011). https://doi.org/10.1103/PhysRevD.83.085017

E.R. Bezerra de Mello, F. Moraes, A.A. Saharian. Fermionic Casimir densities in a conical space with a circular boundary and magnetic flux. Phys. Rev. D 85, 045016 (2012). https://doi.org/10.1103/PhysRevD.85.045016

V.M. Gorkavenko, Yu.A. Sitenko, O.B. Stepanov. Polarization of the vacuum of a quantized scalar field by an impenetrable magnetic vortex of finite thickness. J. Phys. A: Math. Theor. 43, 175401 (2010). https://doi.org/10.1088/1751-8113/43/17/175401

V.M. Gorkavenko, Yu.A. Sitenko, O.B. Stepanov. Vacuum energy induced by an impenetrable flux tube of finite radius. Int. J. Mod. Phys. A 26, 3889 (2011). https://doi.org/10.1142/S0217751X11054346

V.M. Gorkavenko, Yu.A. Sitenko, O.B. Stepanov. Casimir energy and force induced by an impenetrable flux tube of finite radius. Int. J. Mod. Phys. A 28, 1350161 (2013). https://doi.org/10.1142/S0217751X13501613

V.M. Gorkavenko, I.V. Ivanchenko, Yu.A. Sitenko. Induced vacuum current and magnetic field in the background of a vortex. Int. J. Mod. Phys. A 31, 1650017 (2016). https://doi.org/10.1142/S0217751X16500172

Yu.A. Sitenko, V.M. Gorkavenko. Induced vacuum energy-momentum tensor in the background of a (d - 2)-brane in (d+1)-dimensional space-time. Phys. Rev. D 67, 085015 (2003). https://doi.org/10.1103/PhysRevD.67.085015

Yu.A. Sitenko, N.D. Vlasii. Induced vacuum current and magnetic field in the background of a cosmic string. Class. Quantum Grav. 26, 195009 (2009). https://doi.org/10.1088/0264-9381/26/19/195009

Yu.A. Sitenko, N.D. Vlasii. Induced vacuum energy-momentum tensor in the background of a cosmic string. Class. Quantum Grav. 29, 095002 (2012). https://doi.org/10.1088/0264-9381/29/9/095002

Yu.A. Sitenko, A.Yu. Babansky. The Casimir-Aharonov-Bohm effect? Mod. Phys. Lett. A 13, 379 (1998). https://doi.org/10.1142/S0217732398000437

Yu.A. Sitenko, A.Yu. Babansky. Effects of boson-vacuum polarization by a singular magnetic vortex. Phys. At. Nucl. 61, 1594 (1998).

A. Vilenkin, E.P.S. Shellard. Cosmic Strings and Other Topological Defects (Cambridge Univ. Press, 1994).

M.B. Hindmarsh, T.W.B. Kibble. Cosmic strings. Rep. Prog. Phys. 58, 477 (1995). https://doi.org/10.1088/0034-4885/58/5/001

R.A. Battye, B. Garbrecht, A. Moss, H. Stoica. Constraints on brane inflation and cosmic strings. J. Cosmol. Astropart. Phys. JCAP 0801, 020 (2008). https://doi.org/10.1088/1475-7516/2008/01/020

A.K. Geim, K.S. Novoselov. The rise of graphene. Nature Mater. 6, 183 (2007). https://doi.org/10.1038/nmat1849

S.N. Naess, A. Elgsaeetter, G. Helgesen, K.D. Knudsen. Carbon nanocones: Wall structure and morphology. Sci. Technol. Adv. Mat. 10, 065002 (2009). https://doi.org/10.1088/1468-6996/10/6/065002

S. Cahangirov, M. Topsakal, E. Akturk, H. Sahin, S. Ciraci. Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 102, 236804 (2009). https://doi.org/10.1103/PhysRevLett.102.236804

H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tomanek, P.D. Ye. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS NANO 8, 4033 (2014). https://doi.org/10.1021/nn501226z

C.C. Tsuei, J.R. Kirtley. Pairing symmetry in cuprate superconductors. Rev. Mod. Phys. 72, 969 (2000). https://doi.org/10.1103/RevModPhys.72.969

X.L. Qi, S.C. Zhang. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057 (2011). https://doi.org/10.1103/RevModPhys.83.1057

Published

2019-11-25

How to Cite

Sitenko, Y. A., & Gorkavenko, V. M. (2019). Polarization of the Vacuum of the Quantized Spinor Field by a Topological Defect in the Two-Dimensional Space. Ukrainian Journal of Physics, 64(11), 1069. https://doi.org/10.15407/ujpe64.11.1069

Issue

Section

Fields and elementary particles