On Reaction of a Spinning Particle on the Spacetime Curvature


  • R. M. Plyatsko Ya. S. Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, Nat. Acad. of Sci. of Ukraine
  • M. T. Fenyk Ya. S. Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, Nat. Acad. of Sci. of Ukraine




spinning particle, Mathisson–Papapetrou equations, Schwarzschild’s field, strong spin-gravity coupling


The reaction of a classical (nonquantum) spinning particle on the spacetime curvature according to the Mathisson–Papapetrou equations is analyzed. From the point of view of the observer comoving with the particle in Schwarzschild’s field, this reaction is a reaction on the gravitomagnetic components of the gravitational field. The values of these components significantly depend on the relativistic Lorentz factor calculated by the particle velocity relative to the Schwarzschild mass. As a result, the value of the spinning particle acceleration relative to the geodesic motion is proportional to the second power of the Lorentz factor. At the same time, the intensity of the electromagnetic radiation of a charged spinning particle is proportional to the fourth power of this factor. Some numerical estimates are presented.


V. Fock, D. Ivanenko. ? Uber eine megliche geometrische Deutung der relativistischen Quantentheorie. Z. Phys. 54, 798 (1929). https://doi.org/10.1007/BF01341739

V. Fock. Geometrisierung der Diracschen Theorie des Electrons. Z. Phys. 57, 261 (1929). https://doi.org/10.1007/BF01339714

H. Weyl. Gravitation and the electron. Proc. Nat. Acad. Sci. USA 15, 323 (1929). https://doi.org/10.1073/pnas.15.4.323

M. Mathisson. Neue Mechanik materieller Systeme. Acta Phys. Pol. 6, 218 (1937).

S. Wong. Heisenderg equations of motion for spin-1/2 wave equation in general relativity Int. J. Theor. Phys. 5, 221 (1972). https://doi.org/10.1007/BF00670477

L. Kannenberg. Mean motion of Dirac electrons in a gravitational field. Ann. Phys. (N.Y.) 103, 64 (1977). https://doi.org/10.1016/0003-4916(77)90260-3

A. Papapetrou. Spinning test-particles in general relativity. Proc. R. Soc. A 209, 248 (1951). https://doi.org/10.1098/rspa.1951.0200

E. Corinaldesi, A. Papapetrou. Spinning test-particles in general relativity. II. Proc. R. Soc. A 209, 259 (1951). https://doi.org/10.1098/rspa.1951.0201

C.W. Misner, K.S. Thorne, J.A. Wheeler. Gravitation (Freeman, 1973).

S. Rasband. Black holes and spinning particles in general relativity. Phys. Rev. Lett. 30, 111 (1973). https://doi.org/10.1103/PhysRevLett.30.111

R. Wald. Gravitational spin interaction. Phys. Rev. D 6, 406 (1972). https://doi.org/10.1103/PhysRevD.6.406

R.M. Plyatsko, A.L. Vynar. Essentially nongeodesic motions of a rotating test body in the general theory of relativity. Sov. Phys. Dokl. 27, 328 (1982).

R.M. Plyatsko. Manifestations of Gravitational Ultrarelativistic Spin-Orbit Interaction (Naukova Dumka, 1988) (in Ukrainian).

R. Plyatsko. Gravitational ultrarelativistic spin-orbit interaction and the weak equatorial principle. Phys. Rev. D 58, 084031 (1998). https://doi.org/10.1103/PhysRevD.58.084031

K. Thorne, J. Hartle. Laws of motion and precession for black holes and other bodies. Phys. Rev. D 31, 1815 (1985).https://doi.org/10.1103/PhysRevD.31.1815

R. Plyatsko, M. Fenyk, O. Stefanyshyn. In Equations of Motion in Relativistic Gravity 165 (Springer, 2015). https://doi.org/10.1007/978-3-319-18335-0_4

R. Plyatsko, M. Fenyk. Highly relativistic spin-gravity coupling for fermions. Phys. Rev. D 91, 064033 (2015). https://doi.org/10.1103/PhysRevD.91.064033

R. Plyatsko, M. Fenyk. Reply to "Comment on 'Highly relativistic spin-gravity coupling for fermions' ". Phys. Rev. D 93, 028502 (2016). https://doi.org/10.1103/PhysRevD.93.028502

R. Plyatsko, M. Fenyk. Antigravity: Spin-gravity coupling in action. Phys. Rev. D 94, 044047 (2016). https://doi.org/10.1103/PhysRevD.94.044047

R. Plyatsko, M. Fenyk, V. Panat. Highly relativistic spin-gravity coupling. Phys. Rev. D 96 (2017) 064038. https://doi.org/10.1103/PhysRevD.96.064038

R. Plyatsko, V. Panat, M. Fenyk. Nonequatorial circular orbits of spinning particles in the Schwarzschild-de Sitter background. Gen. Relativ. Gravit. 50, 150 (2018). https://doi.org/10.1007/s10714-018-2474-1



How to Cite

Plyatsko, R. M., & Fenyk, M. T. (2019). On Reaction of a Spinning Particle on the Spacetime Curvature. Ukrainian Journal of Physics, 64(11), 1059. https://doi.org/10.15407/ujpe64.11.1059



Fields and elementary particles