Dark Sector in Cosmology: Dark Energy on Cosmological and Astrophysical Scales

Authors

  • B. Novosyadlyj Astronomical Observatory of Ivan Franko National University of Lviv, College of Physics and International Center of Future Science of Jilin University

DOI:

https://doi.org/10.15407/ujpe64.11.998

Keywords:

cosmological model, dark energy, accelerated expansion of the Universe, halos, voids, galaxies

Abstract

The properties and observational manifestations of the dynamical dark energy on the cosmological and astrophysical scales are discussed. We consider the dynamical dark energy in the form of quintessential and phantom scalar fields with different parameters of the equation of state and the effective sound speed. The evolution of the dynamical dark energy and its impact on the dynamics of expansion of the Universe, halos, and voids, and its behavior in the static gravitational fields of astrophysical objects are analyzed. The current state and possible tests designed to establish the nature of dark energy are highlighted.

References

D. Huterer, M.S. Turner. Prospects for probing the dark energy via supernova distance measurements. Phys. Rev. D, 60, 081301 (1999). https://doi.org/10.1103/PhysRevD.60.081301

S. Perlmutter, et al. Discovery of a supernova explosion at half the age of the Universe. Nature 391, 51 (1998). https://doi.org/10.1038/34124

A. Riess, et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J. 16, 1009 (1998). https://doi.org/10.1086/300499

B. Schmidt, et al. The High-Z Supernova search: Measuring cosmic deceleration and global curvature of the universe using type IA Supernovae, Astrophys. J. 507, 46 (1998). https://doi.org/10.1086/306308

Special issue on dark energy. Edited by G. Ellis, H. Nicolai, R. Durrer, R. Maartens. General Relativ. Gravit, 40, 219 (2008). https://doi.org/10.1007/s10714-007-0559-3

L. Amendola, S. Tsujikawa. Dark Energy: Theory and Observations (Cambridge Univ. Press, 2010). https://doi.org/10.1017/CBO9780511750823

Lectures on Cosmology: Accelerated Expansion of the Universe. Edited by G. Wolschin (Springer, 2010).

Dark Energy: Observational and Theoretical Approaches. Edited by P. Ruiz-Lapuente (Cambridge Univ. Press, 2010).

B. Novosyadlyj, V. Pelykh, Yu. Shtanov, F. Zhuk. Dark Energy: Observational Evidence and Theoretical Models. Edited by V. Shulga (Akademperiodyka, 2013).

B. Novosyadlyj et al. Do the cosmological observational data prefer phantom dark energy? Phys. Rev. D 86, 083008 (2012). https://doi.org/10.1103/PhysRevD.86.083008

B. Novosyadlyj et al. Quintessence versus phantom dark energy: the arbitrating power of current and future observations. J. Cosmol. Astropart. Phys. 06, 042 (2013). https://doi.org/10.1088/1475-7516/2013/06/042

B. Novosyadlyj et al. Dynamics of dark energy in the gravitational fields of matter inhomogeneities. Phys. Rev. D 90, 063004 (2014). https://doi.org/10.1103/PhysRevD.90.063004

R.R. Caldwell et al. Phantom energy: Dark energy with causes a cosmic doomsday. Phys. Rev. Lett. 91, 071301 (2003). https://doi.org/10.1103/PhysRevLett.91.071301

S.M. Carroll, M. Hoffman, M. Trodden. Can the dark energy equation-of-state parameter w be less than -1? Phys. Rev. D 68, 023509 (2003). https://doi.org/10.1103/PhysRevD.68.023509

J.M. Cline, S. Jeon, G.D. Moore. The phantom menaced: Constraints on lowenergy effective ghosts. Phys. Rev. D 70, 043543 (2004). https://doi.org/10.1103/PhysRevD.70.043543

N. Arkani-Hamed, H.C. Cheng, M.A. Luty, S. Mukohyama. Ghost condensation and a consistent IR modification of gravity. J. High Energy Phys. 05, 074 (2004). https://doi.org/10.1088/1126-6708/2004/05/074

F. Piazza, S. Tsujikawa. Dilatonic ghost condensate as dark energy. J. Astropart. Phys. Cosmol. 07, 004 (2004). https://doi.org/10.1088/1475-7516/2004/07/004

C. Deffayet, O. Pujolas, I. Sawicki, A. Vikman. Imperfect dark energy from kinetic gravity braiding, J. Astropart. Phys. Cosmol. 10, 026 (2010). https://doi.org/10.1088/1475-7516/2010/10/026

O. Sergijenko, B. Novosyadlyj. Sound speed of scalar field dark energy: Weak effects and large uncertainties, Phys. Rev. D 91 083007 (2015). https://doi.org/10.1103/PhysRevD.91.083007

C.L. Bennett et al. Nine-year wilkinson microwave anisotropy probe (WMAP) observations: Final maps and results. Astrophys. J. Suppl. 208, 20 (2013). https://doi.org/10.1088/0067-0049/208/2/20

Planck Collaboration: P.A.R. Ade et al. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016).

A.G. Riess et al. A 3% solution: Determination of the Hubble constant with the Hubble space telescope and wide field camera 3.Astrophys. J. 730, 119 (2011). https://doi.org/10.1088/0004-637X/730/2/119

N. Padmanabhan et al. A 2 per cent distance to z = 0.35 by reconstructing baryon acoustic oscillations - I. Methods and application to the Sloan Digital Sky Survey. Mon. Not. Roy. Astron. Soc. 427, 2132 (2012). https://doi.org/10.1111/j.1365-2966.2012.21888.x

L. Anderson et al. The clustering of galaxies in the SDSS-III Baryon oscillation spectroscopic survey: Baryon acoustic oscillations in the data release 9 spectroscopic galaxy sample. Mon. Not. Roy. Astron. Soc. 427, 3435 (2012).

F. Beutler et al. The 6dF Galaxy Survey: Baryon acoustic oscillations and the local Hubble constant. Mon. Not. Roy. Astron. Soc. 416, 3017 (2011). https://doi.org/10.1111/j.1365-2966.2011.19250.x

A. Conley et al. Supernova constraints and systematic uncertainties from the first three years of the supernova legacy surveySupernova constraints and systematic uncertainties from the first three years of the supernova legacy survey. Astrophys. J. Suppl. 192, 1 (2011). https://doi.org/10.1088/0067-0049/192/1/1

N. Suzuki et al. The Hubble Space Telescope cluster supernova survey. V. Improving the dark-energy constraints above z > 1 and building an early-type-hosted supernova sample. Astrophys. J. 746, 85 (2012).

A. Lewis, S. Bridle. Cosmological parameters from CMB and other data: A Monte Carlo approach. Phys. Rev. D 66, 103511 (2002). https://doi.org/10.1103/PhysRevD.66.103511

J.-Q. Xia et al. Dark energy constraints after the new Planck data. Phys. Rev. D 88, 063501 (2013). https://doi.org/10.1103/PhysRevD.88.063501

A. Rest et al. Cosmological constraints from measurements of type Ia supernovae discovered during the first 1.5 yr of the Pan-STARRS1 survey. Astrophys. J. 795, 44 (2014).

C. Cheng, Q.-G. Huang. Dark side of the universe after Planck data. Phys. Rev. D 89, 043003 (2014). https://doi.org/10.1103/PhysRevD.89.043003

D. Shafer, D. Huterer. Chasing the phantom: A closer look at type Ia supernovae and the dark energy equation of state Phys. Rev. D 89, 063510 (2014). https://doi.org/10.1103/PhysRevD.89.063510

B. Novosyadlyj et al. Dynamics of minimally coupled dark energy in spherical halos of dark matter. Gen. Relat. Gravit. 48, 30 (2016). https://doi.org/10.1007/s10714-016-2031-8

B. Novosyadlyj et al. Evolution of density and velocity profiles of dark matter and dark energy in spherical voids. Mon. Not. Roy. Astron. Soc. 465, 482 (2017). https://doi.org/10.1093/mnras/stw2767

B. Novosyadlyj et al. Voids in the Cosmic Web as a probe of dark energy. Condens. Matt. Phys. 20, 13901 (2017). https://doi.org/10.5488/CMP.20.13901

B. Novosyadlyj, V. Shulga, W. Han, Yu. Kulinich, M. Tsizh. Halos in Dark Ages: Formation and chemistry. Astrophys. J. 865, 38 (2018). https://doi.org/10.3847/1538-4357/aad7fa

R. Smith et al. Stable clustering, the halo model and nonlinear cosmological power spectra. Mon. Not. Roy. Astron. Soc. 341, 1311 (2003). https://doi.org/10.1046/j.1365-8711.2003.06503.x

Yu. Kulinich et al. Nonlinear power spectra of dark and luminous matter in the halo model of structure formation. Phys. Rev. D 88, 103505 (2013). https://doi.org/10.1103/PhysRevD.88.103505

B. Novosyadlyj et al. Gravitational stability of dark energy in galaxies and clusters of galaxies. Kinemat. Phys. Celest. Bodies 30, 53 (2014). https://doi.org/10.3103/S088459131402007X

M. Tsizh et al. WDS'14 Proceedings of Contributed Papers - Physics, 21 (2014).

S. Smerechynskyi et al. submitted to Phys. Rev. D (2019).

E. Babichev et al. Black holes in the presence of dark energy. Usp. Fiz. Nauk 183, 1257 (2013). https://doi.org/10.3367/UFNr.0183.201312a.1257

Published

2019-11-25

How to Cite

Novosyadlyj, B. (2019). Dark Sector in Cosmology: Dark Energy on Cosmological and Astrophysical Scales. Ukrainian Journal of Physics, 64(11), 998. https://doi.org/10.15407/ujpe64.11.998

Issue

Section

Fields and elementary particles