Black Hole Mimickers in Astrophysical Configurations with Scalar Fields

Authors

  • O. S. Stashko Taras Shevchenko National University of Kyiv
  • V. I. Zhdanov Taras Shevchenko National University of Kyiv

DOI:

https://doi.org/10.15407/ujpe64.11.1078

Keywords:

relativistic astrophysical objects, scalar fields, accretion disks

Abstract

We study static spherically symmetric configurations of General Relativity in the presence of one scalar field (SF). For a monomial SF potential, the solutions of the Einstein SF equations are obtained numerically; then we get distributions of stable circular orbits around the configuration and build images of the corresponding “accretion disks” from the perspective of a distant observer. We discuss also a similar problem in the case of analytic solution with a specially selected SF potential that allows the existence of a black hole. We show that the images are similar in many cases to the case of ordinary Schwarzschild black hole with a luminous ring and a dark spot at the center. On the other hand, a certain selection of model parameters leads to specific features in these images that may help to exclude some exotic models.

References

Event Horizon Telescope Collaboration. First M87 event horizon telescope results. I. The shadow of the supermassive Black Hole. ApJ Lett. 875, id. L1 (2019).

Event Horizon Telescope Collaboration. First M87 event horizon telescope results. V. Physical origin of the asymmetric ring. ApJ Lett. 875, id. L5 (2019).

Y. Mizuno et al. The current ability to test theories of gravity with Black Hole shadows. Nat. Astron. 2, 585 (2018). https://doi.org/10.1038/s41550-018-0449-5

C.M. Will. The confrontation between general relativity and experiment. Liv. Rev. Relativ. 17, 4 (2014) [arXiv:1403.7377]. https://doi.org/10.12942/lrr-2014-4

E. Berti, E. Barausse, V. Cardoso et al. Testing general relativity with present and future astrophysical observations. Class. Quant. Grav. 32, 243001 (2015) [arXiv:1501.07274]. https://doi.org/10.1088/0264-9381/32/24/243001

A. Linde. Inflationary cosmology. Lect. Notes Phys. 738, 1 (2008) [arXiv:0705.0164]. https://doi.org/10.1007/978-3-540-74353-8_1

B. Novosyadlyi, V. Pelykh, Yu. Shtanov, A. Zhuk. Dark Energy and Dark Matter of the Universe (In three volumes). Vol. 1. Dark Matter: Observational Evidence and Theoretical Models. Ed. V. Shulga (Akademperiodyka, 2013) [arXiv:1502.04177].

K. Bamba, S. Capozziello, S. Nojiri, S.D. Odintsov. Dark energy cosmology: The equivalent description via different theoretical models and cosmography tests. Ap. Sp. Sci. 342, 155 (2012) [arXiv:1205.3421]. https://doi.org/10.1007/s10509-012-1181-8

J.D. Bekenstein. Transcendence of the law of baryon-number conservation in black-hole physics. Phys. Rev. Lett. 28, 452 (1972). https://doi.org/10.1103/PhysRevLett.28.452

J.D. Bekenstein. Nonexistence of baryon number for black holes. II. Phys. Rev. D 5, 1239, 2403 (1972). https://doi.org/10.1103/PhysRevD.5.2403

I.Z. Fisher. Scalar mesostatic field with regard for gravitational effects. Zh. Exp. Theor. Phys. 18, 636-640 (1948) [arXiv:gr-qc/9911008].

A.I. Janis, E.T. Newman, J. Winicour. Reality of the Schwarzschild singularity. J. Phys. Rev. Lett. 20, 878 (1968). https://doi.org/10.1103/PhysRevLett.20.878

M. Wyman. Static spherically symmetric scalar fields in general relativity. Phys. Rev. D 24, 839 (1981). https://doi.org/10.1103/PhysRevD.24.839

K.S. Virbhadra. Janis-Newman-Winicour and Wyman solutions are the same. Int. J. Mod. Phys. A 12, 4831 (1997). https://doi.org/10.1142/S0217751X97002577

R.A. Asanov. Point source of massive scalar field in gravitational theory. Teor. Matem. Fiz. 20, 1, (1974). https://doi.org/10.1007/BF01038757

O.S. Stashko, V.I. Zhdanov. Disconnected regions of stable circular orbits in presence of massive scalar field. Odessa Astron. Publ. 30, (2017). https://doi.org/10.18524/1810-4215.2017.30.114270

O.S. Stashko, V.I. Zhdanov. Spherically symmetric configurations of General Relativity in presence of scalar fields: separation of circular orbits. Gen. Rel. Grav. 50, id. 105 (2018). https://doi.org/10.1007/s10714-018-2425-x

O.S. Stashko, V.I. Zhdanov. Spherically symmetric configurations in general relativity in the presence of a linear massive scalar field: Separation of a distribution of test body circular orbits. Ukr. J. Phys. 64, No. 3, 189 (2019). https://doi.org/10.15407/ujpe64.3.189

D. Solovyev, A. Tsirulev. General properties and exact models of static self-gravitating scalar field configurations. Classic. Quant. Grav. 29, id. 055013 (2012). https://doi.org/10.1088/0264-9381/29/5/055013

Z. Stuchl? ik, J. Schee. Appearance of Keplerian discs orbiting Kerr superspinars. Classic. Quant. Grav. 27, id. 215017 (2010) [arXiv:1101.3569]. https://doi.org/10.1088/0264-9381/27/21/215017

A.N. Chowdhury, M. Patil, D. Malafarina, P.S. Joshi. Circular geodesics and accretion disks in Janis-Newman-Winicour and Gamma metric. Phys. Rev. D 85, id. 104031 (2012) [arXiv:1112.2522]. https://doi.org/10.1103/PhysRevD.85.104031

R.S.S. Vieira, J. Schee, W. Klu?zniak, Z. Stuchl? ik. Circular geodesics of naked singularities in the Kehagias-Sfetsos metric of Horava's gravity. Phys. Rev. D 99 id. 024035 (2014) [arXiv:1311.5820]. https://doi.org/10.1103/PhysRevD.90.024035

K. Boshkayev, E. Gasperin, A.C. Gutierrez-Pineres, H. Quevedo, S. Toktarbay. Motion of test particles in the field of a naked singularity. Phys. Rev. D 93, id. 024024 (2016) [arXiv:1509.03827]. https://doi.org/10.1103/PhysRevD.93.024024

V.V. Nikonov, Ju.V. Tchemarina, A.N. Tsirulev. A two-parameter family of exact asymptotically flat solutions to the Einstein-scalar field equations. Classic. Quant. Grav. 25, id. 138001 (2008). https://doi.org/10.1088/0264-9381/25/13/138001

Published

2019-11-25

How to Cite

Stashko, O. S., & Zhdanov, V. I. (2019). Black Hole Mimickers in Astrophysical Configurations with Scalar Fields. Ukrainian Journal of Physics, 64(11), 1078. https://doi.org/10.15407/ujpe64.11.1078

Issue

Section

Fields and elementary particles