Inflationary Magnetogenesis with Helical Coupling

  • Yu. V. Shtanov Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine, Astronomical Observatory, Taras Shevchenko National University of Kyiv
  • M. V. Pavliuk Department of Physics, Taras Shevchenko National University of Kyiv
Keywords: primordial magnetic fields, inflation


We describe a simple scenario of inflationary magnetogenesis based on a helical coupling to electromagnetism. It allows the generation of helical magnetic fields with strength of order up to 10−7 Gs, when extrapolated to the current epoch, in a narrow spectral band centered at any physical wavenumber after the adjustment of model parameters. The additional constraints on magnetic fields arise from the considerations of baryogenesis and, possibly, from the Schwinger effect of the creation of charged particle-antiparticle pairs.


U. Klein, A. Fletcher. Galactic and Intergalactic Magnetic Fields (Springer, 2015) [ISBN: 978-3-319-08941-6].

F. Tavecchio, G. Ghisellini, L. Foschini, G. Bonnoli, G. Ghirlanda, P. Coppi. The intergalactic magnetic field constrained by Fermi/Large Area Telescope observations of the TeV blazar 1ES 0229+200. Mon. Not. Roy. Astron. Soc. 406, L70 (2010).

S. Ando, A. Kusenko. Evidence for gamma-ray halos around active galactic nuclei and the first measurement of intergalactic magnetic fields. Astrophys. J. 722, L39 (2010).

A. Neronov, I. Vovk. Evidence for strong extragalactic magnetic fields from Fermi observations of TeV blazars. Science 328, 73 (2010).

K. Dolag, M. Kachelriess, S. Ostapchenko, R. Tom'as. Lower limit on the strength and filling factor of extragalactic magnetic fields. Astrophys. J. Lett. 727, L4 (2011).

A.M. Taylor, I. Vovk, A. Neronov. Extragalactic magnetic fields constraints from simultaneous GeV-TeV observations of blazars. Astron. Astrophys. 529, A144 (2011).

R. Durrer, A. Neronov. Cosmological magnetic fields: Their generation, evolution and observation. Astron. Astrophys. Rev. 21, 62 (2013).

K. Subramanian. The origin, evolution and signatures of primordial magnetic fields. Rept. Prog. Phys. 79, 076901 (2016).

M.S. Turner, L.M. Widrow. Inflation-produced, large-scale magnetic fields. Phys. Rev. D 37, 2743 (1988).

B. Ratra. Cosmological "seed" magnetic field from inflation. Astrophys. J. 391, L1 (1992).

V. Demozzi, V. Mukhanov, H. Rubinstein. Magnetic fields from inflation? JCAP 08, 025 (2009).

F.R. Urban. On inflating magnetic fields, and the backreactions thereof. JCAP 12, 012 (2011).

H. Bazrafshan Moghaddam, E. McDonough, R. Namba, R.H. Brandenberger. Inflationary magneto-(non)genesis, increasing kinetic couplings, and the strong coupling problem. Class. Quant. Grav. 35, 105015 (2018).

C. Caprini, L. Sorbo. Adding helicity to inflationary magnetogenesis. JCAP 10, 056 (2014).

R. Sharma, S. Jagannathan, T.R. Seshadri, K. Subramanian. Challenges in inflationary magnetogenesis: Constraints from strong coupling, backreaction, and the Schwinger effect. Phys. Rev. D 96, 083511 (2017).

R. Sharma, K. Subramanian, T.R. Seshadri. Generation of helical magnetic field in a viable scenario of inflationary magnetogenesis. Phys. Rev. D 97, 083503 (2018).

R. Durrer, L. Hollenstein, R.K. Jain. Can slow roll inflation induce relevant helical magnetic fields? JCAP 03, 037 (2011).

R.K. Jain, R. Durrer, L. Hollenstein. Generation of helical magnetic fields from inflation. J. Phys. Conf. Ser. 484, 012062 (2014).

T. Fujita, R. Namba, Y. Tada, N. Takeda, H. Tashiro. Consistent generation of magnetic fields in axion inflation models. JCAP 1505, 054 (2015).

L. Campanelli. Helical magnetic fields from inflation. Int. J. Mod. Phys. D 18, 1395 (2009).

Y. Shtanov. Viable inflationary magnetogenesis with helical coupling. JCAP 10, 008 (2019).

K. Kajantie, M. Laine, K. Rummukainen, M.E. Shaposhnikov. A non-perturbative analysis of the finite-T phase transition in SU(2)?U(1) electroweak theory. Nucl. Phys. B 493, 413 (1997).

M. D'Onofrio, K. Rummukainen. Standard model crossover on the lattice. Phys. Rev. D 93, 025003 (2016).

M. Giovannini, M.E. Shaposhnikov. Primordial magnetic fields, anomalous matter-antimatter fluctuations and big bang nucleosynthesis. Phys. Rev. Lett. 80, 22 (1998).

M. Giovannini, M.E. Shaposhnikov. Primordial hypermagnetic fields and triangle anomaly. Phys. Rev. D 57, 2186 (1998).

K. Bamba. Baryon asymmetry from hypermagnetic helicity in dilaton hypercharge electromagnetism. Phys. Rev. D 74, 123504 (2006).

M.M. Anber, E. Sabancilar. Hypermagnetic fields and baryon asymmetry from pseudoscalar inflation. Phys. Rev. D 92, 101501(R) (2015).

T. Fujita, K. Kamada. Large-scale magnetic fields can explain the baryon asymmetry of the Universe. Phys. Rev. D 93, 083520 (2016).

K. Kamada, A.J. Long. Baryogenesis from decaying magnetic helicity. Phys. Rev. D 94, 063501 (2016).

K. Kamada, A.J. Long. Evolution of the baryon asymmetry through the electroweak crossover in the presence of a helical magnetic field. Phys. Rev. D 94, 123509 (2016).

D. Jim?enez, K. Kamada, K. Schmitz, X.-J. Xu. Baryon asymmetry and gravitational waves from pseudoscalar inflation. JCAP 12, 011 (2017).

NIST Handbook of Mathematical Functions F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark (eds.) (NIST & Cambridge Univ. Press, 2010) [ISBN: 978-0-521-19225-5].

T. Kobayashi, N. Afshordi. Schwinger effect in 4D de Sitter space and constraints on magnetogenesis in the early universe. JHEP 1410, 166 (2014).

O.O. Sobol, E.V. Gorbar, M.Kamarpour, S.I. Vilchinskii. Influence of backreaction of electric fields and Schwinger effect on inflationary magnetogenesis. Phys. Rev. D 98, 063534 (2018).

O.O. Sobol, E.V. Gorbar, S.I. Vilchinskii. Backreaction of electromagnetic fields and the Schwinger effect in pseudoscalar inflation magnetogenesis. Phys. Rev. D 100, 063523 (2019).

How to Cite
Shtanov, Y., & Pavliuk, M. (2019). Inflationary Magnetogenesis with Helical Coupling. Ukrainian Journal of Physics, 64(11), 1009.
Fields and elementary particles