Ellipsometric and Spectrometric Studies of (Ga0.2In0.8)2Se3 Thin Film

Authors

  • I. P. Studenyak Uzhhorod National University
  • M. Kranjčec University North
  • V. Yu. Izai Uzhhorod National University
  • V. I. Studenyak Uzhhorod National University
  • M. M. Pop Uzhhorod National University
  • L. M. Suslikov Uzhhorod National University

DOI:

https://doi.org/10.15407/ujpe65.3.231

Keywords:

thin film, spectral ellipsometry, transmission spectra, refractive index, energy pseudogap, Urbach energy

Abstract

Thermal evaporation technique is used to deposite (Ga0,2In0,8)2Se3 thin films. The refractive index and extinction coefficient dispersions are obtained from the spectral ellipsometry measurements. The dispersion of the refractive index is described in the framework of the Wemple–Di Domenico model. The optical transmission spectra of a (Ga0,2In0,8)2Se3 thin film are studied in the temperature range 77–300 K. The temperature behavior of the Urbach absorption edge, as well as the temperature dependences of the energy pseudogap and Urbach energy, are investigated. The influence of different types of disordering on the optical absorption edge of a (Ga0,2In0,8)2Se3 thin film is discussed. Optical parameters of a (Ga0,2In0,8)2Sethin film and a single crystal are compared.

References

S. Popovi'c, B. Celustka, Z. Ruzi'c-Toro˘s, D. Broz. X-ray diffraction study and semiconducting properties of the system Ga2Se3-In2Se3. Phys. Stat. Sol. (a) 41, 255 (1977). https://doi.org/10.1002/pssa.2210410131

J. Ye, T. Yoshida, Y. Nakamura, O. Nittono. Realization of giant optical rotatory power for red and infrared light using III2VI3 compound semiconductor (GaxIn1−x)2Se3. Jap. J. Appl. Phys. 35, 4395 (1996). https://doi.org/10.1143/JJAP.35.4395

P. Dubcek, B. Etlinger, K. Furi'c, M. Kranjcec. Raman spectra of (GaxIn1−x)2Se3. Phys. Stat. Sol. (a) 122, K87 (1990). https://doi.org/10.1002/pssa.2211220160

P.P. Dub˘cek, B. Etlinger, B. Pivac, M. Kranjcec. Infrared investigation of phonon modes in (GaxIn1−x)2Se3 solid solution in the 0.1 ≤ x ≤ 0.4 concentration range. Solid State Commun. 81, 735 (1992). https://doi.org/10.1016/0038-1098(92)90779-9

M. Kranjcec, B. Celustka, B. Etlinger, D. Desnica. The indirect allowed optical transition in (Ga0.3In0.7)2Se3. Phys. Stat. Sol. (a) 109, 329 (1988). https://doi.org/10.1002/pssa.2211090136

D.I. Desnica, M. Kranjcec, B. Celustka. Optical absorption edge and Urbach's rule in mixed single crystals of (GaxIn1−x)2Se3 in the indium rich region. J. Phys. Chem. Solids 52, 915 (1991). https://doi.org/10.1016/0022-3697(91)90015-R

M. Kranjcec, D.I. Desnica, B. Celustka, Gy.Sh. Kovacs. The effect of pressure on the optical absorption edge in (Ga0.3In0.7)2Se3. Phys. Stat. Sol. (a) 139, 513 (1993). https://doi.org/10.1002/pssa.2211390224

M. Kranjcec, D.I. Desnica, B. Celustka, Gy.Sh. Kovacs, I.P. Studenyak. Fundamental optical absorption edge and compositional disorder in y1-(GaxIn1−x)2Se3 single crystals. Phys. Stat. Sol. (a) 144, 223 (1994). https://doi.org/10.1002/pssa.2211440125

M. Kranjcec, I.P. Studenyak, Yu.M. Azhniuk, S.I. Perechynskiy. Investigations of photoluminescence and optical absorption edge in semiconductors crystals of y1-(GaxIn1−x)2Se3 solid solutions. Ukr. Fiz. Zh. 50, 1260 (2005).

M. Kranjcec, I.P. Studenyak, Yu.M. Azhniuk. Photoluminescence and optical absorption edge in y1-(GaxIn1−x)2Se3 mixed crystals. Phys. Stat. Sol. (b) 238, 439 (2005). https://doi.org/10.1002/pssb.200540073

M. Kranjcec, I.P. Studenyak. Temperature changes in the photoluminescence and the intrinsic absorption edge of the (Ga0.1In0.9)2Se3 crystal. Optics and Spectroscopy 100, 80 (200). https://doi.org/10.1134/S0030400X06010152

J. Ye, T. Yoshida, Y. Nakamura, O. Nittono. Optical activity in the vacancy ordered III2VI3 compound semiconductor (Ga0.3In0.7)2Se3. Appl. Phys. Lett. 67, 3066 (1995). https://doi.org/10.1063/1.114866

M. Kranjcec, I.D. Desnica, B. Celustka, A.N. Borec, Gy.Sh.Kovacs, Z.P.Hadmashy, L.M. Suslikov, I.P. Studenyak. On some crystal-optic properties of y1-(GaxIn1−x)2Se3 single crystals. Phys. Stat. Sol. (a) 153, 539 (1996). https://doi.org/10.1002/pssa.2211530229

I.P. Studenyak, M. Kranjcec, L.M. Suslikov, D.Sh. Kovach. Piezobirefringence in y1-(GaxIn1−x)2Se3 single crystals. Optics and Spectroscopy 95, 427 (2003). https://doi.org/10.1134/1.1613008

I.P. Studenyak, M. Kranjcec, L.M. Suslikov, D.Sh. Kovach. Influence of temperature on birefringence of y1-(GaxIn1−x)2Se3 single crystals. Ukr. Fiz. Zh. 48, 910 (2003). (in Ukrainian). https://doi.org/10.1134/1.1613008

M. Kranjcec, I.P. Studenyak, L.M. Suslikov, Gy.Sh. Kovacs, E. Cerovec. Birefringence in y1-(GaxIn1−x)2Se3 single crystals. Opt. Mat. 25, 307 (2004). https://doi.org/10.1016/j.optmat.2003.08.005

I.P. Studenyak, M. Kranjcec, O.M. Borets. Compositional variation of optical and refractometric parameters of y1-(GaxIn1−x)2Se3 mixed crystals. J. Optoelectron. Adv. Mater. 5, 865 (2003).

I.P. Studenyak, M. Kranj˘cec, L.M. Suslikov. Optical activity of y1-(GaxIn1−x)2Se3 crystals. Optics and Spectroscopy 95, 599 (2003). https://doi.org/10.1134/1.1621445

M. Kranjcec, I.D. Desnica, I.P. Studenyak, B. Celustka, A.N. Borec, I.M. Yurkin, Gy.Sh. Kovacs. Acousto-optic modulator with a (Ga0.4In0.6)2Se3 monocrystal as the active element. Applied Optics 36, 490 (1997). https://doi.org/10.1364/AO.36.000490

R. Swanepoel. Determination of the thickness and optical constants of amorphous silicon. J. Phys. E: Sci. Instrum. 16, 1214 (1983). https://doi.org/10.1088/0022-3735/16/12/023

S.H. Wemple, M.Di Domenico. Behaviour of the dielectric constant in covalent and ionic materials. Phys. Rev. B 3, 1338 (1971). https://doi.org/10.1103/PhysRevB.3.1338

K. Tanaka. Optical properties and photoinduced changes in amorphous As-S films. Thin Solid Films 66, 271 (1980). https://doi.org/10.1016/0040-6090(80)90381-8

M.S. Tubbs. A spectroscopic interpretation of crystalline ionicity. Phys. Stat. Sol. (b) 41, k61 (1970). https://doi.org/10.1002/pssb.19700410164

F. Urbach. The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324 (1953). https://doi.org/10.1103/PhysRev.92.1324

H. Sumi, A. Sumi. The Urbach-Martienssen rule revisited. J. Phys. Soc. Japan 56, 2211 (1987). https://doi.org/10.1143/JPSJ.56.2211

M.V. Kurik. Urbach rule (Review). Phys. Stat. Sol. (a) 8, 9 (1971). https://doi.org/10.1002/pssa.2210080102

M. Beaudoin, A.J.G. DeVries, S.R. Johnson, H. Laman, T. Tiedje. Optical absorption edge of semi-insulating GaAs and InP at high temperatures. Appl. Phys. Lett. 70, 3540 (1997). https://doi.org/10.1063/1.119226

Z. Yang, K.P. Homewood, M.S. Finney, M.A. Harry, K.J. Reeson. Optical absorption study of ion beam synthesized polycrystalline semiconducting FeSi2. J. Appl. Phys. 78, 1958 (1995). https://doi.org/10.1063/1.360167

G.D. Cody, T. Tiedje, B. Abeles, B. Brooks, Y. Goldstein. Disorder and the optical-absorption edge of hydrogenated amorphous silicon. Phys. Rev. Lett. 47, 1480 (1981). https://doi.org/10.1103/PhysRevLett.47.1480

M. Kranjcec, I.P. Studenyak, M.V. Kurik. On the Urbach rule in non-crystalline solids. J. Non-Cryst. Solids 355, 54 (2009). https://doi.org/10.1016/j.jnoncrysol.2008.03.051

Downloads

Published

2020-03-26

How to Cite

Studenyak, I. P., Kranjčec, M., Izai, V. Y., Studenyak, V. I., Pop, M. M., & Suslikov, L. M. (2020). Ellipsometric and Spectrometric Studies of (Ga0.2In0.8)2Se3 Thin Film. Ukrainian Journal of Physics, 65(3), 231. https://doi.org/10.15407/ujpe65.3.231

Issue

Section

Semiconductors and dielectrics