On Goldstone Fields with Spin Higher than 1/2


  • D. P. Sorokin Istituto Nazionale di Fisica Nucleare, Sezione di Padova




higher-spin symmetries, spontaneous symmetry breaking, non-linear realizations


We review the properties of 3d non-linear models of vector and vector-spinor Goldstone fields associated with the spontaneous breaking of certain higher-spin counterparts of supersymmetry (so-called Hietarinta algebras), whose Lagrangians are of the Volkov–Akulov type. At the quadratic order, these Lagrangians contain, respectively, the Chern–Simons and Rarita–Schwinger terms. The vector Goldstone model has a propagating degree of freedom which, in a decoupling limit, is a quartic Galileon scalar field (similar to those appearing in models of modified gravity). On the other hand, the vector-spinor goldstino retains the gauge symmetry of the Rarita–Schwinger action and eventually reduces to the latter by a non-linear field redefinition. We thus find that, in three space-time dimensions, the free Rarita–Schwinger action is invariant under a hidden rigid symmetry generated by fermionic vector-spinor operators and acting non-linearly on the Rarita–Schwinger goldstino.


J. Goldstone. Field theories with superconductor solutions. Nuovo Cim. 19, 154 (1961). https://doi.org/10.1007/BF02812722

Y. Nambu. Quasiparticles and gauge invariance in the theory of superconductivity. Phys. Rev. 117, 648 (1960). https://doi.org/10.1103/PhysRev.117.648

D.V. Volkov, V.P. Akulov. Possible universal neutrino interaction. JETP Lett. 16, 438 (1972).

D.V. Volkov, V.P. Akulov. Is the Neutrino a Goldstone particle? Phys. Lett. B 46, 109 (1973). https://doi.org/10.1016/0370-2693(73)90490-5

F. Englert, R. Brout. Broken symmetry and the mass of Gauge vector mesons. Phys. Rev. Lett. 13, 321 (1964). https://doi.org/10.1103/PhysRevLett.13.321

P.W. Higgs. Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13, 508 (1964). https://doi.org/10.1103/PhysRevLett.13.508

D.V. Volkov, V.A. Soroka. Higgs effect for Goldstone particles with spin 1/2. JETP Lett. 18, 312 (1973).

D.V. Volkov, V.A. Soroka. Gauge fields for symmetry group with spinor parameters. Theor. Math. Phys. 20, 829 (1974). https://doi.org/10.1007/BF01040161

K. Hinterbichler. Theoretical aspects of massive gravity. Rev. Mod. Phys. 84, 671 (2012). https://doi.org/10.1103/RevModPhys.84.671

C. de Rham. Massive gravity. Living Rev. Rel. 17, 7 (2014). https://doi.org/10.12942/lrr-2014-7

A. Schmidt-May, M. von Strauss. Recent developments in bimetric theory. J. Phys. A 49, 183001 (2016). https://doi.org/10.1088/1751-8113/49/18/183001

L. Amendola et al. Cosmology and fundamental physics with the Euclid satellite. Living Rev. Rel. 21, 2 (2018).

M.A. Vasiliev. Higher spin gauge theories in four, three and two dimensions. Int. J. Mod. Phys. D 5, 763 (1996). https://doi.org/10.1142/S0218271896000473

I. Buchbinder, S. Kuzenko. Ideas and methods of super-symmetry and supergravity: A Walk through superspace (Institute of Physics Publishing, 1998).

M.A. Vasiliev. Higher spin gauge theories: Star product and AdS space. In: The Many Faces of the Superworld. Edited by M. Shifman (World Scientific, 2000), pp. 533-610, hep-th/9910096. https://doi.org/10.1142/9789812793850_0030

M.A. Vasiliev. Progress in higher spin gauge theories. arXiv:0104246 [hep-th].

X. Bekaert, I.L. Buchbinder, A. Pashnev, M. Tsulaia. On higher spin theory: Strings, BRST, dimensional reductions. Class. Quant. Grav. 21, S1457 (2004). https://doi.org/10.1088/0264-9381/21/10/018

D. Sorokin. Introduction to the classical theory of higher spins. AIP Conf. Proc. 767, 172 (2005). https://doi.org/10.1063/1.1923335

N. Bouatta, G. Compere, A. Sagnotti. An introduction to free higher-spin fields. arXiv:0409068 [hep-th].

I.A. Bandos. BPS preons in supergravity and higher spin theories. An Overview from the hill of twistor approach. AIP Conf. Proc. 767, 141 (2005). https://doi.org/10.1063/1.1923334

X. Bekaert, S. Cnockaert, C. Iazeolla, M.A. Vasiliev. Nonlinear higher spin theories in various dimensions. arXiv:0503128 [hep-th].

D. Francia, A. Sagnotti. Higher-spin geometry and string theory. J. Phys. Conf. Ser. 33, 57 (2006). https://doi.org/10.1088/1742-6596/33/1/006

A. Fotopoulos, M. Tsulaia. Gauge invariant Lagrangians for free and interacting higher spin fields. A review of the BRST formulation. Int. J. Mod. Phys. A 24, 1 (2009). https://doi.org/10.1142/S0217751X09043134

A. Campoleoni. Metric-like Lagrangian formulations for higher-spin fields of mixed symmetry. Riv.Nuovo Cim. 033, 123 (2010).

M. Taronna. Higher spins and string interactions. arXiv:1005.3061 [hep-th].

X. Bekaert, N. Boulanger, P. Sundell. How higher spin gravity surpasses the spin two barrier: no-go theorems versus yes-go examples. Rev. Mod. Phys. 84, 987 (2012). https://doi.org/10.1103/RevModPhys.84.987

E. Sezgin, P. Sundell. Supersymmetric higher spin theories. J. Phys. A 46, 214022 (2013). https://doi.org/10.1088/1751-8113/46/21/214022

M.R. Gaberdiel, R. Gopakumar. Minimal model holography. J. Phys. A 46, 214002 (2013). https://doi.org/10.1088/1751-8113/46/21/214002

S. Giombi, X. Yin. The higher spin/vector model duality. J. Phys. A 46, 214003 (2013. https://doi.org/10.1088/1751-8113/46/21/214003

E. Joung, L. Lopez, M. Taronna. Solving the Noether procedure for cubic interactions of higher spins in (A)dS. J. Phys. A 46, 214020 (2013). https://doi.org/10.1088/1751-8113/46/21/214020

A. Sagnotti. Notes on strings and Higher spins. J. Phys. A 46, 214006 (2013). https://doi.org/10.1088/1751-8113/46/21/214006

V.E. Didenko, E.D. Skvortsov. Elements of Vasiliev theory. arXiv:1401.2975 [hep-th].

R. Rahman, M. Taronna. From higher spins to strings: A primer. arXiv:1512.07932 [hep-th].

C. Sleight. Interactions in higher-spin gravity: A holographic perspective. J. Phys. A 50, 383001 (2017). https://doi.org/10.1088/1751-8121/aa820c

C. Sleight. Metric-like methods in higher spin holography. PoS Modave 2016, 003 (2017). https://doi.org/10.22323/1.296.0003

D. Sorokin, M. Tsulaia. Higher spin fields in hyperspace. A Review, Universe 4, 7 (2018). https://doi.org/10.3390/universe4010007

R. Rahman. Frame- and metric-like higher-spin fermions. arXiv:1712.09264 [hep-th].

D.J. Gross. High-energy symmetries of string theory. Phys. Rev. Lett. 60, 1229 (1988). https://doi.org/10.1103/PhysRevLett.60.1229

B. Sundbor. Stringy gravity, interacting tensionless strings and massless higher spins. Nucl. Phys. Proc. Suppl. 102, 113 (2001). https://doi.org/10.1016/S0920-5632(01)01545-6

U. Lindstrom, M. Zabzine. Tensionless strings, WZWmodels at critical level and massless higher spin fields. Phys. Lett. B 584, 178 (2004). https://doi.org/10.1016/j.physletb.2004.01.035

G. Bonelli. On the tensionless limit of bosonic strings, in nite symmetries and higher spins. Nucl. Phys. B 669, 159 (2003). https://doi.org/10.1016/j.nuclphysb.2003.07.002

S. Bansal, D. Sorokin. Can Chern-Simons or Rarita-Schwinger be a Volkov-Akulov Goldstone? JHEP 07, 106 (2018). https://doi.org/10.1007/JHEP07(2018)106

J. Hietarinta. Supersymmetry generators of arbitrary spin. Phys. Rev. D 13, 838 (1976). https://doi.org/10.1103/PhysRevD.13.838

S. Fedoruk, J. Lukierski. Massive relativistic particle models with bosonic counterpart of supersymmetry. Phys. Lett. B 632, 371 (2006). https://doi.org/10.1016/j.physletb.2005.10.051

S. Fedoruk, E. Ivanov, J. Lukierski. Massless higher spin D = 4 superparticle with both N = 1 supersymmetry and its bosonic counterpart. Phys. Lett. B 641, 226 (2006).

I. Bandos, L. Martucci, D. Sorokin, M. Tonin. Brane induced supersymmetry breaking and de Sitter supergravity. JHEP 02, 080 (2016). https://doi.org/10.1007/JHEP02(2016)080

I. Bandos, M. Heller, S.M. Kuzenko, L. Martucci, D. Sorokin. The Goldstino brane, the constrained superfields and matter in N = 1 supergravity. JHEP 11, 109 (2016). https://doi.org/10.1007/JHEP11(2016)109

A. Nicolis, R. Rattazzi, E. Trincherini. The Galileon as a local modification of gravity. Phys. Rev. D 79, 064036 (2009). https://doi.org/10.1103/PhysRevD.79.064036

S.-Y. Zhou. Goldstone's theorem and hamiltonian of multigalileon modified gravity. Phys. Rev. D 83, 064005 (2011). https://doi.org/10.1103/PhysRevD.83.064005

V. Sivanesan. Hamiltonian of galileon field theory. Phys. Rev. D 85, 084018 (2012). https://doi.org/10.1103/PhysRevD.85.084018

D. Chernyavsky, D. Sorokin. Three-dimensional (higher-spin) gravities with extended Schrodinger and l-conformal Galilean symmetries. JHEP 07, 156, (2019). https://doi.org/10.1007/JHEP07(2019)156

H. Bacry, P. Combe, J.L. Richard. Group-theoretical analysis of elementary particles in an external electromagnetic field. 1. the relativistic particle in a constant and uniform field. Nuovo Cim. A 67, 267 (1970). https://doi.org/10.1007/BF02725178

R. Schrader. The Maxwell group and the quantum theory of particles in classical homogeneous electromagnetic fields. Fortsch. Phys. 20, 701 (1972). https://doi.org/10.1002/prop.19720201202

P. Salgado, R.J. Szabo, O. Valdivia. Topological gravity and transgression holography. Phys. Rev. D 89, 084077 (2014). https://doi.org/10.1103/PhysRevD.89.084077

S. Hoseinzadeh, A. Rezaei-Aghdam. (2+1)-dimensional gravity from Maxwell and semisimple extension of the Poincar? Gauge symmetric models. Phys. Rev. D 90, 084008 (2014). https://doi.org/10.1103/PhysRevD.90.084008

L. Aviles, E. Frodden, J. Gomis, D. Hidalgo, J. Zanelli. Non-relativistic Maxwell Chern-Simons gravity. JHEP 05, 047 (2018). https://doi.org/10.1007/JHEP05(2018)047

C. Aragone, S. Deser. Hypersymmetry in D = 3 of coupled gravity massless spin 5/2 system. Class. Quant. Grav. 1, L9 (1984). https://doi.org/10.1088/0264-9381/1/2/001

Yu. M. Zinoviev. Hypergravity in AdS3. Phys. Lett. B 739, 106 (2014). https://doi.org/10.1016/j.physletb.2014.10.041

C. Bunster, M. Henneaux, S. Hortner, A. Leonard. Super-symmetric electric-magnetic duality of hypergravity. Phys. Rev. D 90, 045029 (2014). https://doi.org/10.1103/PhysRevD.90.045029

O. Fuentealba, J. Matulich, R. Troncoso. Extension of the Poincare group with half-integer spin generators: hyper-gravity and beyond. JHEP 09, 003 (2015). https://doi.org/10.1007/JHEP09(2015)003

O. Fuentealba, J. Matulich, R. Troncoso. Asymptotically flat structure of hypergravity in three spacetime dimensions. JHEP 10, 009 (2015). https://doi.org/10.1007/JHEP10(2015)009

M. Henneaux, A. Perez, D. Tempo, R. Troncoso. In proceedings of international workshop on Higher spin Gauge theories (World Scientific, 2017).

R. Rahman. The uniqueness of hypergravity. arXiv:1905.04109 [hep-th].

D.M. Pecafiel, P. Salgado-Rebolledo. Non-relativistic symmetries in three space-time dimensions and the Nappi-Witten algebra. arXiv:1906.02161.

P. Concha, E. Rodriguez. Non-relativistic gravity theory based on an enlargement of the extended Bargmann algebra. JHEP 07, 085 (2019). https://doi.org/10.1007/JHEP07(2019)085

P. Salgado-Rebolledo. The Maxwell group in 2+1 dimensions and its infinite-dimensional enhancements. arXiv:1905.09421 [hep-th].




How to Cite

Sorokin, D. P. (2019). On Goldstone Fields with Spin Higher than 1/2. Ukrainian Journal of Physics, 64(11), 1014. https://doi.org/10.15407/ujpe64.11.1014



Fields and elementary particles