Fradkin Equation for a Spin-3/2 Particle in the Presence of External Electromagnetic and Gravitational Fields

Authors

  • V. V. Kisel Belarus State University of Informatics and Radioelectronics
  • E. M. Ovsiyuk I.P. Shamyakin Mozyr State Pedagogical University
  • A. V. Ivashkevich Institute of Physics of the NAS of Belarus
  • V. M. Red’kov Institute of Physics of the NAS of Belarus

DOI:

https://doi.org/10.15407/ujpe64.12.1112

Keywords:

Gel’fand–Yaglom formalism, spin-3/2 particle, Fradkin theory, external electromagnetic field, curved space-time, non-minimal interaction, Majorana particle

Abstract

Fradkin’s model for a spin-3/2 particle in the presence of external fields is investigated. Applying the general Gel’fand–Yaglom formalism, we develop this model on the base of a set of six irreducible representations of the proper Lorentz group, making up a 20-component wave function. Applying the standard requirements such as the relativistic invariance, single nonzero mass, spin S =3/2, P-symmetry, and existence of a Lagrangian for the model, we derive a set of spinor equations, firstly in the absence of external fields. The 20-component wave function consists of a bispinor and a vector-bispinor. In the absence of external fields, the Fradkin model reduces to the minimal Pauli–Fierz (or Rarita–Schwinger) theory. Details of this equivalence are given. Then we take the presence of external electromagnetic fields into account. It turns out that the Fradkin equation in the minimal form contains an additional interaction term governed by electromagnetic tensor Fab. In addition, we consider the external curved space-time background. In the generally covariant case, the Fradkin equation contains the additional gravitational interaction term governed by the Ricci tensor Rab. If the electric charge of a particle is zero, the Fradkin model remains correct and describes a neutral Majorana-type spin-3/2 particle interacting additionally with the geometric background through the Ricci tensor.

References

P.A.M. Dirac. Relativistic wave equations. Proc. R. Soc. London. A 155, 447 (1936). https://doi.org/10.1098/rspa.1936.0111

E. Majorana. Teoria simmetrica dell electrone e dell positrone. Nuovo Cimento 14, 171 (1937). https://doi.org/10.1007/BF02961314

M. Fierz. Uber die relativistische theorie Kraftefreier-Teilchen mit beliebigem spin. Helv. Phys. Acta. 12, 3 (1939).

W. Pauli. Uber relativistische Feldleichungen von Teilchen mit beliebigem spin im elektromagnetishen feld. Helv. Phys. Acta. 12, 297 (1939).

V.L. Ginzburg, Ya.A. Smorodinsky. On wave equations for particles with variable spin. Zh. Eksp. Teor. Fiz. 13, 274 (1943).

A.S. Davydov.Wave equations of a particle having spin 3/2 in absence of field. Zh. Eksp. Teor. Fiz. 13, 313 (1943).

H.J. Bhabha, Harish-Chandra. On the theory of point particles. Proc. Roy. Soc. London. A 183, 134 (1944). https://doi.org/10.1098/rspa.1944.0026

H.J. Bhabha. Relativistic wave equations for the proton. Proc. Indian Acad. Sci. A 21, 241 (1945). https://doi.org/10.1007/BF03046927

H.J. Bhabha. Relativistic wave equations for elementary particles. Rev. Mod. Phys. 17, 200 (1945). https://doi.org/10.1103/RevModPhys.17.200

H.J. Bhabha. The theory of the elementary particles. Rep. Progr. Phys. 10, 253 (1946). https://doi.org/10.1088/0034-4885/10/1/310

I.M. Gel'fand, A.M. Yaglom. General relativistic invariant equations and infinitely dimensional representation of the Lorentz group. Zh. Eksp. Teor. Fiz. 18, 703 (1948).

E.E. Fradkin. To the theory of particles with higher spins. Zh. Eksp. Teor. Fiz. 20, 27 (1950).

F.I. Fedorov. On minimal polynomials of matrices of relativistic wave equations. Doklady AN SSSR. 79, 787 (1951).

F.I. Fedorov. To the theory of a spin 2 particle. Uch. Zapiski Belor. State Univ. Ser. Fiz.-Mat. 12, 156 (1951).

H.J. Bhabha. An equation for a particle with two mass states and positive charge density. Phil. Mag. 43, 33 (1952). https://doi.org/10.1080/14786440108520964

F.I. Fedorov. Generalized relativistic wave equations. Doklady AN SSSR 82, 37 (1952).

M. Petras. A contribution of the theory of the Pauli-Fierz's equations a particle with spin 3/2. Czech. J. Phys. 5, 169 (1955). https://doi.org/10.1007/BF01689195

M. Petras. A note to Bhabha's equation for a particle with maximum spin 3/2. Czech. J. Phys. 5, 418 (1955). https://doi.org/10.1007/BF01689195

V.Ya. Fainberg. To the interaction theory of the particles of the higher spins with electromagnetic and meson fields. Trudy FIAN SSSR. 6, 269 (1955).

V.L. Ginzburg. On relativistic wave equations with a mass spectrum. Acta Phys. Pol. 15, 163 (1956).

H. Shimazu. A relativistic wave equation for a particle with two mass states of spin 1 and 0. Progr. Theor. Phys. 16, 285 (1956). https://doi.org/10.1143/PTP.16.287

T. Regge. On properties of the particle with spin 2. Nuovo Cimento 5, 325 (1957). https://doi.org/10.1007/BF02855242

L.A. Shelepin. Covariant theory of relativistic wave equations. Nucl. Phys. 33, 580 (1962). https://doi.org/10.1016/0029-5582(62)90550-3

A.Z. Capri. Non uniqueness of the spin 1/2 equation. Phys. Rev. 178, 1811 (1969). https://doi.org/10.1103/PhysRev.187.1811

A.Z. Capri. First order wave equations for multimass fermions. Nuovo Cimento. B 64, 151 (1969). https://doi.org/10.1007/BF02710288

F.I. Fedorov, V.A. Pletyukhov. Wave equations with repeated representations of the Lorentz group. Half-integer spin. Proc. Nat. Acad. Sci. of Belarus. Phys.-Math. series 3, 78 (1970).

F.I. Fedorov, V.A. Pletyukhov. Wave equations with repeated representations of the Lorentz group. Proc. Nat. Acad. Sci. of Belarus. Phys.-Math. series 6, 81 (1969).

V.A. Pletyukhov, F.I. Fedorov. The wave equation with repeated representations for spin 0 particle. Proc. Nat. Acad. Sci. of Belarus. Phys.-Math. series 2, 79 (1970).

F.I. Fedorov, V.A. Pletyukhov. Wave equations with repeated representations of the Lorentz group. Half-integer spin. Proc. Nat. Acad. Sci. of Belarus. Phys.-Math. series 3, 78 (1970).

V.A. Pletyukhov, F.I. Fedorov. Wave equation with repeated reprentations for a spin 1 particle. Proc. Nat. Acad. Sci. of Belarus. Phys.-Math. series 3, 84 (1970).

A. Shamaly, A.Z. Capri. First-order wave equations for integral spin. Nuovo Cimento. B 2, 235 (1971). https://doi.org/10.1007/BF02723086

A.Z. Capri. Electromagnetic properties of a new spin-1/2 field. Progr. Theor. Phys. 48, 1364 (1972). https://doi.org/10.1143/PTP.48.1364

A. Shamaly, A.Z. Capri. Unified theories for massive spin 1 fields. Can. J. Phys. 51, 1467 (1973). https://doi.org/10.1139/p73-195

M.A.K. Khalil. Properties of a 20-component spin 1/2 relativistic wave equation. Phys. Rev. D 15, 1532 (1977). https://doi.org/10.1103/PhysRevD.15.1532

M.A.K. Khalil. An equivalence of relativistic field equations. Nuovo Cimento. A 45, 389 (1978). https://doi.org/10.1007/BF02730078

L. Garding. Mathematics of invariant wave equations. In Lect. Notes in Physics 73, 102 (1978). https://doi.org/10.1007/BFb0032331

A.A. Bogush, V.V. Kisel. Equations with repeated representations of the Lorentz group and Pauli interaction. Proc. Nat. Acad. Sci. of Belarus. Phys.-Math. series. 3, 61 (1979).

W. Cox. Higher-rank representations for zero-spin filds theories. J. Phys. A 15, 627 (1982). https://doi.org/10.1088/0305-4470/15/2/029

W. Cox. First-order formulation of massive spin-2 field theories. J. Phys. A 15, 253 (1982). https://doi.org/10.1088/0305-4470/15/1/034

P.M. Mathews, B. Vijayalakshmi, M. Sivakuma. On the admissible Lorentz group representations in unique-mass, unique-spin relativistic wave equations. J. Phys. A 15, 1579 (1982). https://doi.org/10.1088/0305-4470/15/11/002

P.M. Mathews, B. Vijayalakshmi. On inequivalent classes unique-mass-spin relativistic wave equations involving repeated irreducible representations with arbitrary multiplicities. J. Math. Phys. 25, 1080 (1984). https://doi.org/10.1063/1.526250

W. Cox. On the Lagrangian and Hamiltonian constraint algorithms for the Rarita-Schwinger field coupled to an external electromagnetic field. J. Phys. A 22, 1599 (989). https://doi.org/10.1088/0305-4470/22/10/015

S. Deser, A. Waldron. Inconsistencies of massive charged gravitating higher spins. Nucl. Phys. B 631, 369 (2002). https://doi.org/10.1016/S0550-3213(02)00199-2

E.M. Ovsiyuk, V.V. Kisel, Y.A. Voynova, O.V. Veko, V.M. Red'kov. Spin 1/2 particle with anomalous magnetic moment in a uniform magnetic field, exact solutions. Nonlinear Phenomena in Complex Systems 19, 153 (2016).

V. Kisel, Ya. Voynova, E. Ovsiyuk, V. Balan, V. Red'kov. Spin 1 particle with anomalous magnetic moment in the external uniform magnetic field. Nonlin. Phen. Complex Syst. 20, 21 (2017).

A.M. Ishkhanyan, O. Florea, E.M. Ovsiyuk, V.M. Red'kov. Dirac-K¨ahler particle in Riemann spherical space: Boson interpretation. Canad. J. Phys. 93, 1427 (2015). https://doi.org/10.1139/cjp-2015-0143

V.A. Pletjukhov, V.M. Red'kov, V.I. Strazhev. Relativistic Wave Equations and Intrinsic Degrees of Freedom (Belarus. Science, 2015). 328 p.

V.V. Kisel, V.A. Pletyukhov, V.V. Gilewsky, E.M. Ovsiyuk, O.V. Veko, V.M. Red'kov. Spin 1/2 particle with two mass states, interaction with external fields. Nonlin. Phen. Complex Syst. 20, 404 (2017).

E.M. Ovsiyuk, O.V. Veko, Ya.A. Voynova, V.V. Kisel, V. Balan, V.M. Red'kov. Spin 1/2 particle with two masses in magnetic field. Appl. Sci. 20, 148 (2018).

V.V. Kisel, E.M. Ovsiyuk, O.V. Veko, Ya.A. Voynova, V. Balan, V.M. Red'kov. Elementary Particles with Internal Structure in External Fields. I. General Theory, II. Physical Problems (Nova Sci. Publ., 2018).

Downloads

Published

2019-12-09

How to Cite

Kisel, V. V., Ovsiyuk, E. M., Ivashkevich, A. V., & Red’kov, V. M. (2019). Fradkin Equation for a Spin-3/2 Particle in the Presence of External Electromagnetic and Gravitational Fields. Ukrainian Journal of Physics, 64(12), 1112. https://doi.org/10.15407/ujpe64.12.1112

Issue

Section

Fields and elementary particles