A New Approach to the Approximate Analytic Solution of the Three-Dimensional Schrӧdinger Equation for Hydrogenic and Neutral Atoms in the Generalized Hellmann Potential Model

Authors

  • A. Maireche Laboratory of Physics and Material Chemistry, Physics department, Sciences Faculty, University of M’sila

DOI:

https://doi.org/10.15407/ujpe65.11.987

Keywords:

Schr¨odinger equation, Hellmann potential model, noncommutative quantum mechanics, star product, generalized Bopp’s shift method

Abstract

Within the framework of nonrelativistic noncommutative quantum mechanics using the improved approximation scheme to the centrifugal term for any l-states via the generalized Bopp’s shift method and standard perturbation theory, we have obtained the energy eigenvalues of a newly proposed generalized Hellmann potential model (the GHP model) for the hydrogenic atoms and neutral atoms. The potential is a superposition of the attractive Coulomb potential plus Yukawa one, and new central terms appear as a result of the effects of noncommutativity properties of space and phase in the Hellmann potential model. The obtained energy eigen-values appear as a function of the generalized gamma function, the discrete atomic quantum numbers (j, n, l, s and m), infinitesimal parameters (a, b, б) which are induced by the position-position and phase-phase noncommutativity, and, the dimensional parameters (Θ, 0) of the GHP model, in the nonrelativistic noncommutative three-dimensional real space phase (NC: 3D-RSP). Furthermore, we have shown that the corresponding Hamiltonian operator with (NC: 3D-RSP) symmetries is the sum of the Hamiltonian operator of the Hellmann potential model and two operators, the first one is the modified spin-orbit interaction, while the second is the modified Zeeman operator for the hydrogenic and neutral atoms.

References

S.M. Ikhdair, R. Server. A perturbative Ptratment for the energy levels of neutral atoms. Intern. J. Mod. Phys. A 21 (31), 6465 (2006). https://doi.org/10.1142/S0217751X06034240

H. Hellmann. A new approximation method in the problem of many electrons. J. Chem. Phys. 3 (1), 61 (1935). https://doi.org/10.1063/1.1749559

H. Hellmann, W. Kassatotschkin. Metallic bonding according to the combined approximation procedure. J. Chem. Phys. 4 (5), 324 (1936). https://doi.org/10.1063/1.1749851

G. Kocak, O. Bayrak, I. Boztosun. Arbitrary l-state solution of the Hellmann potential. J. Theor. Comput. Chem. 6 (4), 893 (2007). https://doi.org/10.1142/S0219633607003313

S.M. Ikhdair, B.J. Falaye. Two approximate analytic eigen-solutions of the Hellmann potential with any arbitrary angular momentum. Zeitschrift F¨ur Naturforschung A 68(10-11) (2013).

M. Hamzavi, K.E. Thylwe, A.A. Rajabi. Approximate bound states solution of the Hellmann potential. Commun. Theor. Phys. 60 (1), 1 (2013). https://doi.org/10.1088/0253-6102/60/1/01

C.A. Onate, M.C. Onyeaju, A.N. Ikot, O. Ebomwonyi. Eigen solutions and entropic system for Hellmann potential in the presence of the Schr¨odinger equation. Eur. Phys. J. Plus. 132 (11), 462 (2017).

C.O. Edet, K.O. Okorie, H. Louis, N.A. Nzeata-Ibe. Any l-state solutions of the Schr¨odinger equation interacting with Hellmann-Kratzer potential model. Indian J. Phys. 94 243 (2020). https://doi.org/10.1007/s12648-019-01467-x

H. Louis, I.B. Iserom, M.T. Odey, A.U. Ozioma, N.-I. Nelson, I.I. Alexander, E.C. Okon, Solutions to the Dirac equation for Manning-Rosen plus shifted Deng-Fan potential and Coulomb-like tensor interaction using Nikiforov-Uvarov method. Intern. J. Chem. 10 (3), 99 (2018). https://doi.org/10.5539/ijc.v10n3p99

H. Louis, I. Iserom, O.U. Akakuru, N.A. Nzeala-ibe, A.I. Ikeuba, T.O. Magu, P. Amos, E.O. Collins. l -state solutions of the relativistic and non- relativistic wave equations for modified Hylleraas-Hulthen potential using the Nikiforov-Uvarov quantum formalism. Oriental J. Phys. Sci. 3 (1), 3 (2018). https://doi.org/10.13005/OJPS03.01.02

L. Hitler, I.B. Iserom, P. Tchoua, A.A. Ettah. Bound state solutions of the Klein-Gordon equation for the more general exponential screened Coulomb potential plus Yukawa (MGESCY) potential using Nikiforov-Uvarov method. J. Phys. Math. 9 (01), 1000261 (2018). https://doi.org/10.4172/2090-0902.1000261

C.O. Edet, P.O Okoi, S.O. Chima. Analytic solutions of the Schr¨odinger equation with non-central generalized inverse quadratic Yukawa potential. Revista Brasileira de Ensino de Fisica. 42, e20190083 (2020). https://doi.org/10.1590/1806-9126-rbef-2019-0083

C.O. Edet, P.O. Okoi. Any l-state solutions of the Schr¨odinger equation for q-deformed Hulthen plus generalized inverse quadratic Yukawa potential in arbitrary dimensions. Revista Mexicana de Fisica 65, 333 (2019). https://doi.org/10.31349/RevMexFis.65.333

U.S. Okorie, A.N. Ikot, C.O. Edet, I.O. Akpan, R. Sever, R. Rampho. Solutions of the Klein-Gordon equation with

generalized hyperbolic potential in D-dimensions. J. Phys. Commun. 3, 095015 (2019). https://doi.org/10.1088/2399-6528/ab42c6

B.I. Ita, H. Louis, O.U. Akakuru, N.A. Nzeata-Ibe, A.I. Ikeuba, T.O. Magu, P.I. Amos, C.O. Edet. Approximate solution to the Schr¨odinger equation with Manning-Rosen plus a class of Yukawa potential via WKBJ approximation method. Bulg. J. Phys. 45, 323 (2018).

C.O. Edet, U.S. Okorie, A.T. Ngiangia, A.N. Ikot. Bound state solutions of the Schr¨odinger equation for the modified Kratzer potential plus screened Coulomb potential. Indian. J. Phys. 94, 425 (2020). https://doi.org/10.1007/s12648-019-01477-9

S. Capozziello, G. Lambiase, G. Scarpetta. Generalized uncertainty principle from quantum geometry. Int. J. Theor. Phys. 39, 15 (2000). https://doi.org/10.1023/A:1003634814685

A. Maireche. The Klein-Gordon equation with modified Coulomb plus inverse-square potential in the noncommutative three-dimensional space. Mod. Phys. Lett. A 35 (5), 2050015 (2020). https://doi.org/10.1142/S0217732320500157

A. Maireche. The Klein-Gordon equation with modified Coulomb potential plus inverse-square-root potential in three-dimensional noncommutative space. Phys. J. 3, 186 (2019).

P.M. Ho, H.-C. Kao. Noncommutative quantum mechanics from noncommutative quantum field theory. Phys. Rev. Lett. 88 (15), 151602 (2002). https://doi.org/10.1103/PhysRevLett.88.151602

M. Darroodi, H. Mehraban, H. Hassanabadi. The Klein-Gordon equation with the Kratzer potential in the non-commutative space. Mod. Phys. Lett. A 33 (35), 1850203 (2018). https://doi.org/10.1142/S0217732318502036

P. Gnatenko. Parameters of noncommutativity in Liealgebraic noncommutative space. Phys. Rev. D 99 (2), https://doi.org/10.1103/PhysRevD.99.026009

-1 (2019).

P. Gnatenko, V.M. Tkachuk.Weak equivalence principle in noncommutative phase space and the parameters of non-commutativity. Phys. Lett. A 381 (31), 2463 (2017). https://doi.org/10.1016/j.physleta.2017.05.056

O. Bertolami, J.G. Rosa, C.M.L. De aragao, P. Castorina, D. Zappala. Scaling of varialbles and the relation between noncommutative parameters in noncommutative quantum mechanics. Mod. Phys. Lett. A 21 (10), 795 (2006). https://doi.org/10.1142/S0217732306019840

A. Maireche. A recent study of excited energy levels of diatomics for modified more general exponential screened Coulomb potential: Extended quantum mechanics. J. Nano-Electron. Phys. 9 (3), 03021 (2017). https://doi.org/10.21272/jnep.9(3).03021

E.F. Djema¨ı, H. Smail. On quantum mechanics on noncommutative quantum phase space. Commun. Theor. Phys. (Beijing, China). 41 (6), 837 (2004). https://doi.org/10.1088/0253-6102/41/6/837

Shi-Dong Liang, T. Harko. Toward an observable test of noncommutative quantum mechanics. Ukr. J. Phys. 64, 983 (2019). https://doi.org/10.15407/ujpe64.11.983

Yi Yuan, Li Kang, Wang Jian-Hua, Chen Chi-Yi. Spin-1/2 relativistic particle in a magnetic field in NC phase space. Chinese Physics C 34 (5), 543 (2010). https://doi.org/10.1088/1674-1137/34/5/005

O. Bertolami, P. Leal. Aspects of phase-space noncommutative quantum mechanics. Phys Lett. B 750, 6 (2015). https://doi.org/10.1016/j.physletb.2015.08.024

C. Bastos; O. Bertolami; N.C. Dias, J.N. Prata, Weyl-Wigner formulation of noncommutative quantum mechanics. J. Mat. Phys. 49 (7), 072101 (2008). https://doi.org/10.1063/1.2944996

J. Zhang. Fractional angular momentum in non-commutative spaces. Phys. Lett. B 584 (1-2), 204 (2004). https://doi.org/10.1016/j.physletb.2004.01.049

J. Gamboa, M. Loewe, J.C. Rojas. Noncommutative quantum mechanics. Phys. Rev. D 64, 067901 (2001). https://doi.org/10.1103/PhysRevD.64.067901

M. Chaichian, Sheikh-Jabbari, A. Tureanu. Hydrogen atom spectrum and the Lamb shift in noncommutative QED. Phys. Rev. Lett. 86 (13), 2716 (2001). https://doi.org/10.1103/PhysRevLett.86.2716

A. Maireche. New relativistic atomic mass spectra of quark (u, d and s) for extended modified Cornell potential in nano and Planck's scales. J. Nano- Electron. Phys. 8 (1), 01020-1 (2016). https://doi.org/10.21272/jnep.8(1).01020

A. Maireche. New bound state energies for spherical quantum dots in presence of a confining potential model at nano and Planck's scales. NanoWorld J. 1 (4), 122 (2016). https://doi.org/10.17756/nwj.2016-016

J.Wang, K. Li. The HMWeffect in noncommutative quantum mechanics. J. Phys. A: Math. and Theor. 40 (9) 2197- https://doi.org/10.1088/1751-8113/40/9/021

(2007).

K. Li, J. Wang. The topological AC effect on non-commutative phase space. Europ. Phys. J. C 50 (4), 1007 (2007). https://doi.org/10.1140/epjc/s10052-007-0256-0

A. Maireche. A complete analytical solution of the mie-type potentials in non-commutative 3-dimensional spaces and phases symmetries. Afr. Rev. Phys. 11, 111 (2016).

A. Maireche. A new nonrelativistic investigation for the lowest excitations states of interactions in one-electron atoms, muonic, hadronic and Rydberg atoms with modified inverse power potential. Intern. Frontier Sci. Lett. 9, 33 (2016). https://doi.org/10.18052/www.scipress.com/IFSL.9.33

A. Maireche. New quantum atomic spectrum of Schr¨odinger equation with pseudo harmonic potential in both noncommutative three-dimensional spaces and phases. Lat. Am. J. Phys. Educ. 9 (1) 1301 (2015).

A. Maireche. New bound states for modified vibrational-rotational structure of supersingular plus Coulomb potential of the Schr¨odinger equation in one-electron atoms. Intern. Lett. Chem., Phys. Astronomy 73, 31 (2017). https://doi.org/10.18052/www.scipress.com/ILCPA.73.31

A. Maireche. Extended of the Schr¨odinger equation with new Coulomb potentials plus linear and harmonic radial terms in the symmetries of noncommutative quantum mechanics. J. Nano- Electron. Phys. 10 (6), 06015-1 (2018). https://doi.org/10.21272/jnep.10(6).06015

A. Maireche. Investigations on the relativistic interactions in one-electron atoms with modified Yukawa potential for spin 1/2 particles. Intern. Frontier Sci. Lett. 11, 29 (2017). https://doi.org/10.18052/www.scipress.com/IFSL.11.29

R.L. Greene, C. Aldrich. Variational wave functions for a screened Coulomb potential. Phys. Rev. A 14 (6), 2363 (1976). https://doi.org/10.1103/PhysRevA.14.2363

S.H. Dong, W.C. Qiang, G.H. Sun, V.B. Bezerra. Analytical approximations to the l-wave solutions of the Schr¨odinger equation with the Eckart potential. J. Phys. A: Math. Theor. 40 (34), 10535 (2007). https://doi.org/10.1088/1751-8113/40/34/010

I.S. Gradshtein, I.M. Ryzhik. Table of Integrals, Series and Products. Edited by A. Jeffrey, D. Zwillinger (Rensselaer Polytechnic Institute, 2007). [ISBN-13: 978-0-12-373637-6, ISBN-10: 0-12-373637-4

Downloads

Published

2020-11-12

How to Cite

Maireche, A. (2020). A New Approach to the Approximate Analytic Solution of the Three-Dimensional Schrӧdinger Equation for Hydrogenic and Neutral Atoms in the Generalized Hellmann Potential Model. Ukrainian Journal of Physics, 65(11), 987. https://doi.org/10.15407/ujpe65.11.987

Issue

Section

General physics