Hybrid Functional Analysis of Electronic Properties of Transition-Metal Phthalocyanines
DOI:
https://doi.org/10.15407/ujpe66.1.55Keywords:
organometallic materials, hybrid functionalsAbstract
This work presents the ab initio study of transition-metal phthalocyanines within a PBE0 hybrid functional. The list of metal impurities includes manganese, iron, cobalt, nickel, copper, and zinc. All calculations of isolated molecules have been performed with the use of the projector augment-wave method. For iron phthalocyanine, we have performed four calculations with different values of the mixing parameter a (the value of the exact exchange) – 0, 1/4, 1/3, and 1/2. For all other molecules, the calculations have been performed for a = 1/4 and 1/3. The electronic structure parameters including the HOMO-LUMO energy gap, Fermi level, magnetization, and imaginary part of the dielectric function are presented and compared with available theoretical and experimental data. Manganese, iron, and cobalt phthalocyanines show a strong dependence of electronic properties on the value of the exact exchange interaction. In other molecules with nickel, copper, and zinc, this dependence is not significant.
References
F.A. Sarı, M. Kazici, E. Harputlu, S. Bozar, Koyun, Y. Sahin, N. Ugur, M. Ince, S. G¨unes. Zn phthalocyanine derivatives for solution-processed small molecule organic solar cells. Chemistry Select bf 3, 13692 (2018).
https://doi.org/10.1002/slct.201802991
C.J. Lim, M.G. Park, M.S. Kim, J.H. Han, S. Cho, M.-H. Cho, Y. Yi, H. Lee, S.W. Cho. Electronic structure of C60/zinc phthalocyanine/V2O5 interfaces studied using photoemission spectroscopy for organic photovoltaic applications. Molecules 23, 449 (2018).
https://doi.org/10.3390/molecules23020449
J. Benduhn, F. Piersimoni, G. Londi, A. Kirch, J. Widmer, C. Koerner, D. Beljonne, D. Neher, D. Spoltore, K. Vandewal. Impact of triplet excited states on the open-circuit voltage of organic solar cells. Adv. Energy Mater. 8, 1800451 (2018).
https://doi.org/10.1002/aenm.201800451
J. Yu, Z. Jiang, Y. Hao, Q. Zhu, M. Zhao, X. Jiang, J. Zhao. Two dimensional self-assembly zinc porphyrin and zinc phthalocyanine heterojunctions with record high power conversion efficiencies. J. Phys.: Condensed Matter. 30, 25LT02 (2018).
https://doi.org/10.1088/1361-648X/aac502
M.D. Pavlova, I.A. Lamkin, S.A. Tarasov, A.V. Solomonov. Organic photodetective device based on metal phthalocyanine. J. Phys.: Conference Series 1038, 012104 (2018).
https://doi.org/10.1088/1742-6596/1038/1/012104
S. Ahmadi, M.N. Shariati, S. Yu, M. G¨othelid. Molecular layers of ZnPc and FePc on Au(111) surface: Charge transfer and chemical interaction. J. Chem. Phys. 137, 084705 (2012).
https://doi.org/10.1063/1.4746119
T. Lei, H. Dong, J. Xi, Y. Niu, J. Xu, F. Yuan, B. Jiao, W. Zhang, X. Hou, Z. Wu. Highly-efficient and low-temperature perovskite solar cells by employing a Bi-hole transport layer consisting of vanadium oxide and copper phthalocyanine. Chem. Commun. 54, 6177 (2018).
https://doi.org/10.1039/C8CC03672A
Q. Hu, E. Rezaee, Q. Dong, H. Shan, Q. Chen, L. Wang, B. Liu, J.-H. Pan, Z.-X. Xu. P3HT/phthalocyanine nanocomposites as efficient hole-transporting materials for perovskite solar cells. Solar RRL 3, 1800264 (2019).
https://doi.org/10.1002/solr.201800264
C.A. Betty, N. Padma, S. Arora, P. Survaiya, D. Bhattacharya, S. Choudhury, M. Roy. Porous silicon-copper phthalocyanine heterostructure based photoelectrochemical cell. Appl. Surface Sci. 428, 463 (2018).
https://doi.org/10.1016/j.apsusc.2017.09.174
H. Kim, H.G. Park, M.-J. Maeng, Y.R. Kang, K.R. Park, J. Choi, Y. Park, Y.D. Kim, C. Kim. Multifunctional bilayer template for near-infrared-sensitive organic solar cells. ACS Applied Materials & Interfaces 10, 16681 (2018).
https://doi.org/10.1021/acsami.8b03468
M.-S. Choi, S. Lee, H.J. Kim, J.-J. Kim. Inverted near-infrared organic photodetector with oriented lead (II)
phthalocyanine molecules via substrate heating. Organic Electronics 61, 164 (2018).
https://doi.org/10.1016/j.orgel.2018.05.038
P. Brogdon, H. Cheema, J.H. Delcamp. Near-infrared-absorbing metal-free organic, porphyrin, and phthalocyanine sensitizers for panchromatic dye-sensitized solar cells. Chem. Sus. Chem. 11, 86 (2018).
https://doi.org/10.1002/cssc.201701441
A. Sreedevi, K.P. Priyanka, K.K. Babitha, S.I. Sankararaman, V. Thomas. Synthesis and characterization of silver tungstate/iron phthalocyanine nanocomposite for electronic applications. Europ. Phys. J. B 90, 102 (2017).
https://doi.org/10.1140/epjb/e2017-80149-9
D. Zhao, H. Liu, Y. Miao, H. Wang, B. Zhao, Y. Hao, F. Zhu, B. Xu. A red tandem organic light-emitting diode
based on organic photovoltaic-type charge generation layer. Organic Electronics 32, 1 (2016).
https://doi.org/10.1016/j.orgel.2015.12.029
S.A. Choi, K. Kim, S.J. Lee, H. Lee, A. Babajanyan, B. Friedman, K. Lee. Effects of thermal preparation on Copper Phthalocyanine organic light emitting diodes. J. Lumines. 171, 149 (2016).
https://doi.org/10.1016/j.jlumin.2015.11.015
B. Ghazal, E.N. Kaya, A. Husain, A. Ganesan, M. Durmu¸s, S. Makhseed. Biotinylated-cationic zinc(II) phthalocyanine towards photodynamic therapy. J. Porphyrins and Phthalocyanines 23, 46 (2019).
https://doi.org/10.1142/S1088424618501158
D.C. Soler, J. Ohtola, H. Sugiyama, M.E. Rodriguez, L. Han, N.L. Oleinick, M. Lam, E.D. Baron, K.D. Cooper, T.S. McCormick. Activated T cells exhibit increased up-take of silicon phthalocyanine Pc 4 and increased susceptibility to Pc 4-photodynamic therapy-mediated cell death. Photochem. Photobiol. Sci. 15, 822 (2016).
https://doi.org/10.1039/C6PP00058D
A. Kvitschal, I. Cruz-Cruz, I.A. H¨ummelgen. Copper phthalocyanine based vertical organic field effect transistor with naturally patterned tin intermediate grid electrode. Organic Electronics 27, 155 (2015).
https://doi.org/10.1016/j.orgel.2015.09.010
A. Rydosz, E. Maciak, K. Wincza, S. Gruszczynski. Microwave-based sensors with phthalocyanine films for acetone, ethanol and methanol detection. Sensors and Actuators B: Chem. 237, 876 (2016).
https://doi.org/10.1016/j.snb.2016.06.168
H. Xu, C. Liao, Y. Liu, B.-C. Ye, B. Liu. Iron Ppthalocyanine decorated nitrogen-doped graphene biosensing platform for real-time detection of nitric oxide released from living cells. Analytical Chem. 90, 4438 (2018).
https://doi.org/10.1021/acs.analchem.7b04419
T. Soganci, Y. Baygu, N. Kabay, Y. G¨ok, M. Ak. Comparative investigation of peripheral and nonperipheral zinc
phthalocyanine-based polycarbazoles in terms of optical, electrical, and sensing properties. ACS Appl. Mater. & Interfaces 10, 21654 (2018).
https://doi.org/10.1021/acsami.8b06206
J. Hu, R. Wu. Control of the magnetism and magnetic anisotropy of a single-molecule magnet with an electric field. Phys. Rev. Lett. 110, 097202 (2013).
https://doi.org/10.1103/PhysRevLett.110.097202
T. Gredig, C.N. Colesniuc, S.A. Crooker, I.K. Schuller. Substrate-controlled ferromagnetism in iron phthalocyanine films due to one-dimensional iron chains. Phys. Rev. B 86, 014409 (2012).
https://doi.org/10.1103/PhysRevB.86.014409
A. Candini, V. Bellini, D. Klar, V. Corradini, R. Biagi, V. De Renzi, K. Kummer, N.B. Brookes, U. del Pennino, H. Wende et al. Ferromagnetic exchange coupling between Fe phthalocyanine and Ni(111) surface mediated by the extended states of graphene. J. Phys. Chem. C 118, 17670 (2014).
https://doi.org/10.1021/jp5041663
W. Kuch, M. Bernien. Controlling the magnetism of adsorbed metal-organic molecules. J Phys.: Cond. Matter. 29, 023001 (2016).
https://doi.org/10.1088/0953-8984/29/2/023001
I.E. Brumboiu, S. Haldar, J. Luder, O. Eriksson, H.C. Herper, B. Brena, B. Sanyal. Influence of electron correlation on the electronic structure and magnetism of transition-metal phthalocyanines. J. Chem. Theory and Computation
, 1772 (2016).
C. Adamo, G.E. Scuseria, V. Barone. Accurate excitation energies from time-dependent density functional theory: Assessing the PBE0 model. J. Chem. Phys. 111, 2889 (1999).
https://doi.org/10.1063/1.479571
C.A. Guido, E. Br'emond, C. Adamo, P. Cortona. Communication: One third: A new recipe for the PBE0 paradigm. J. Chem. Phys. 138, 021104 (2013).
https://doi.org/10.1063/1.4775591
J. Sun, R.C. Remsing, Y. Zhang, Z. Sun, A. Ruzsinszky, H. Peng, Z. Yang, A. Paul, U. Waghmare, X. Wu et al. Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional. Nature Chem. 8, 831 (2016).
https://doi.org/10.1038/nchem.2535
J.P. Perdew, K. Burke, M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).
https://doi.org/10.1103/PhysRevLett.77.3865
P.E. Bl¨ochl. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).
https://doi.org/10.1103/PhysRevB.50.17953
X. Gonze, F. Jollet, F. Abreu Araujo, D. Adams, B. Amadon, T. Applencourt, C. Audouze, J.-M. Beuken, J. Bieder, A. Bokhanchuk et al. Recent developments in the ABINIT software package. Comp. Phys. Commun. 205, 106 (2016).
https://doi.org/10.1016/j.cpc.2016.04.003
I.E. Brumboiu, S. Haldar, J. L¨uder, O. Eriksson, H.C. Herper, B. Brena, B. Sanyal. Influence of electron correlation
on the electronic structure and magnetism of transition-metal phthalocyanines. J. Chem. Theory and Computation 12, 1772 (2016).
https://doi.org/10.1021/acs.jctc.6b00091
B.E. Williamson, T.C. VanCott, M.E. Boyle, G.C. Misener, M.J. Stillman, P.N. Schatz. Determination of the ground state of manganese phthalocyanine in an argon matrix using magnetic circular dichroism and absorption spectroscopy. J. Amer. Chem. Soc. 114, 2412 (1992).
https://doi.org/10.1021/ja00033a016
S. Heutz, C. Mitra, W.Wu, A. Fisher, A. Kerridge, M. Stoneham, A. Harker, J. Gardener, H.-H. Tseng, T. Jones et
al. Molecular thin films: A new type of magnetic switch. Adv. Materials 19, 3618 (2007).
https://doi.org/10.1002/adma.200701458
T. Kroll, R. Kraus, R. Sch¨onfelder, V.Y. Aristov, O.V. Molodtsova, P. Hoffmann, M. Knupfer. Transition metal
phthalocyanines: Insight into the electronic structure from soft x-ray spectroscopy. J. Chem. Phys. 137, 054306 (2012).
https://doi.org/10.1063/1.4738754
D. Stradi, C. D' iaz, F. Mart' in, M. Alcam' i. A density functional theory study of the manganese-phthalocyanine. Theor. Chem. Accounts 128, 497 (2011).
https://doi.org/10.1007/s00214-010-0852-1
M.-S. Liao, S. Scheiner. Electronic structure and bonding in metal phthalocyanines, Metal=Fe, Co, Ni, Cu, Zn, Mg. J. Chem. Phys. 114, 9780 (2001).
https://doi.org/10.1063/1.1367374
P.S. Miedema, S. Stepanow, P. Gambardella, F.M.F. de Groot. 2p x-ray absorption of iron-phthalocyanine. J. Phys.: Conf. Ser. 190, 012143 (2009).
https://doi.org/10.1088/1742-6596/190/1/012143
M. Evangelisti, J. Bartolome, L.J. de Jongh, G. Filoti. Magnetic properties of a-iron(II) phthalocyanine. Phys. Rev. B 66, 144410 (2002).
https://doi.org/10.1103/PhysRevB.66.144410
S. Baba, A. Suzuki, T. Oku. Electronic structures and magnetic/ optical properties of metal phthalocyanine complexes. AIP Conf. Proc. 1709, 020012 (2016).
https://doi.org/10.1063/1.4941211
N. Ishikawa. Phthalocyanine-Based Magnets (Springer, 2010) [ISBN: 978-3-642-04752-7].
https://doi.org/10.1007/978-3-642-04752-7_7
S. Stepanow, P.S. Miedema, A. Mugarza, G. Ceballos, P. Moras, J.C. Cezar, C. Carbone, F.M.F. de Groot, P. Gambardella. Mixed-valence behavior and strong correlation effects of metal phthalocyanines adsorbed on metals. Phys. Rev. B 83, 220401 (2011).
https://doi.org/10.1103/PhysRevB.83.220401
N. Marom, X. Ren, J.E. Moussa, J.R. Chelikowsky, L. Kronik. Electronic structure of copper phthalocyanine from G0W0 calculations. Phys. Rev. B 84, 195143 (2011).
https://doi.org/10.1103/PhysRevB.84.195143
S.A. Fischer, C.J. Cramer, N. Govind. Excited-state absorption from real-time time-dependent density functional
theory: Optical limiting in zinc phthalocyanine. J. Phys. Chem. Lett. 7, 1387 (2016).
https://doi.org/10.1021/acs.jpclett.6b00282
L. Meng, K. Wang, Y. Han, Y. Yao, P. Gao, C. Huang, W. Zhang, F. Xu. Synthesis, structure, and optical properties of manganese phthalocyanine thin films and nanostructures. Progr. Natural Sci.: Mater. Intern. 27, 329 (2017).
https://doi.org/10.1016/j.pnsc.2017.04.010
R. Seoudi, G. El-Bahy, Z. E. Sayed. Ultraviolet and visible spectroscopic studies of phthalocyanine and its complexes thin films. Opt. Mater. 29, 304 (2006).
https://doi.org/10.1016/j.optmat.2005.10.002
M.M. El Nhass, H.S. Soliman, H.S. Metwally, A.M. Farid, A.A.M. Farag, A.A. El Shazly. Optical properties of evaporated iron phthalocyanine(FePc) thin films. J. Optics 30, 121 (2001).
https://doi.org/10.1007/BF03354732
K.-J. Huang, Y.-S. Hsiao, W.-T. Whang. Selective growth and enhanced field emission properties of micropatterned iron phthalocyanine nanofiber arrays. Organ. Electron. 12, 1826 (2011).
https://doi.org/10.1016/j.orgel.2011.07.013
A.Gadalla,O.Cr'egut,M.Gallart,B.H¨onerlage, J.-B.Beaufrand, M. Bowen, S. Boukari, E. Beaurepaire, P. Gilliot.
Ultrafast optical dynamics of metal-free and cobalt phthalocyanine thin films. J. Phys. Chem. C 114, 4086 (2010).
https://doi.org/10.1021/jp911438y
M.M. EL-NAHASS, K.F. Abd-El-Rahman, A.A.M. Farag, A.A.A. Darwish. Optical characterisation of thermally
evaporated nickel phthalocyanine thin films. Intern. J. Mod. Phys. B 18, 421 (2004).
https://doi.org/10.1142/S0217979204023982
M. Sayyad, M. Shah, K. Karimov, Z. Ahmad, M. Saleem, M.M. Tahir. Fabrication and study of NiPc thin film based
surface type photocapacitors. J. Optoelectron. Adv. Mater. 10, 2805 (2008).
A. Djuriˇsi'c, C. Kwong, T. Lau, W. Guo, E. Li, Z. Liu, H. Kwok, L. Lam, W. Chan. Optical properties of copper phthalocyanine. Optics Commun. 205, 155 (2002).
https://doi.org/10.1016/S0030-4018(02)01311-1
Z.T. Liu, H.S. Kwok, A.B. Djuriˇsi'c. The optical functions of metal phthalocyanines. J. Phys. D: Appl. Phys. 37, 678 (2004).
https://doi.org/10.1088/0022-3727/37/5/006
S. Senthilarasu, S. Velumani, R. Sathyamoorthy, A. Subbarayan, J. Ascencio, G. Canizal, P. Sebastian, J. Chavez, R. Perez. Characterization of zinc phthalocyanine (ZnPc) for photovoltaic applications. Appl. Phys. A 77, 383 (2003).
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.