Calculation of the Macromolecular Size of Bovine Serum Albumin from the Viscosity of Its Aqueous Solutions


  • O. V. Khorolskyi Poltava V.G. Korolenko National Pedagogical University
  • Yu. D. Moskalenko Poltava V.G. Korolenko National Pedagogical University



bovine serum albumin, aqueous solution, effective macromolecular radius, Malomuzh–Orlov theory


On the basis of experimental data for the shear viscosity of aqueous bovine serum albumin (BSA) solutions and in the framework of the Malomuzh–Orlov cellular approach, the surface of effective radii of BSA macromolecules has been plotted for the constant pH = 5.2 in the concentration interval of 2.0–27.2 wt% and the temperature interval 278–318 K. A rapid nonlinear increase in the effective radii of BSA macromolecules is shown to take place up to BSA concentrations of about 5 wt% in the whole examined temperature interval. The maxima of the effective radii of BSA macromolecules are observed at a BSA concentration of 5 wt%, and their position is temperature-independent. In the concentration interval 5.0–27.2 wt%, the effective radii of BSA macromolecules decrease, and this reduction is linear at BSA concentrations higher than 10 wt%. A comparison of the calculation results with literature data on the self-diffusion coefficient of macromolecules in solutions testifies to the efficiency of the Malomuzh–Orlov formula for calculating the macromolecular radii of globular proteins on the basis of shear viscosity data for their aqueous solutions.


T. Peters, jr. All About Albumin: Biochemistry, Genetics, and Medical Applications (Academic Press, 1996).

K.A. Majorek, P.J. Porebski, A. Dayal, M.D. Zimmerman, K. Jablonska, A.J. Stewart, M. Chruszcz, W. Minor. Structural and immunologic characterization of bovine, horse, and rabbit serum albumins. Mol. Immunol. 52, 174 (2012).

D.C. Carter, J.X. Ho. Structure of serum-albumin. Adv. Protein Chem. 45, 153 (1994).

C. Leggio, L. Galantini, N.V. Pavel. About the albumin structure in solution: Cigar expanded form versus heart normal shape. Phys. Chem. Chem. Phys. 10, 6741 (2008).

K. Baler, O.A. Martin, M.A. Carignano, G.A. Ameer, J.A. Vila, I. Szleifer. Electrostatic unfolding and interactions of albumin driven by pH changes: A molecular dynamics study. J. Phys. Chem. B 118, 921 (2014).

K. Monkos. Viscosity of bovine serum albumin aqueous solutions as a function of temperature and concentration. Int. J. Biol. Macromol. 18, 61 (1996).

G.K. Batchelor. An Introduction to Fluid Dynamics (Cambridge Univ. Press, 2000).

V.Ya. Gotsulskyi, A.A. Guslistyi, N.P. Malomuzh. Characteristic changes in the density and shear viscosity of human blood plasma with varying protein concentration. Ukr. J. Phys. (to be published).

N.P. Malomuzh, E.V. Orlov. Static shear viscosity of a bimodal suspension. Ukr. J. Phys. 50, 618 (2005).

N.P. Malomuzh, E.V. Orlov. New version of the cellular method for determining the viscosity of suspensions. Kolloid. Zh. 64, 802 (2002) (in Russian).

O.V. Khorolskyi. Effective radii of macromolecules in dilute polyvinyl alcohol solutions. Ukr. J. Phys. 63, 144 (2018).

O.V. Khorolskyi. Calculation of the effective macromolecular radii of human serum albumin from the shear viscosity data for its aqueous solutions. Ukr. J. Phys. 64, 285 (2019).

J.K.G. Dhont. An Introduction to Dynamics of Colloids (Elsevier, 1996).

M. Ripoll, K. Mussawisade, R.G. Winkler, G. Gompper. Dynamic regimes of fluids simulated by multiparticle-collision dynamics. Phys. Rev. E 72, 016701 (2005).

B. Cichocki, B.U. Felderhof. Diffusion of Brownian particles with hydrodynamic interaction and hard core repulsion. J. Chem. Phys. 94, 556 (1991).

M. Medina-Noyola. Long-time self-diffusion in concentrated colloidal dispersions. Phys. Rev. Lett. 60, 2705 (1988).

P. Mazur, U. Geigenm¨uller. A simple formula for the short-time self-diffusion coefficient in concentrated suspensions. Physica A 146, 657 (1987).

A. van Blaaderen, J. Peetermans, G. Maret, J.K.G. Dhont. Long-time self-diffusion of spherical colloidal particles measured with fluorescence recovery after photobleaching. J. Chem. Phys. 96, 4591 (1992).

I. Serdyuk, N. Zakkai, J. Zakkai. Methods in Molecular Biophysics: Structure, Function, Dynamics. Vol. 1 (KDU, 2009) (in Russian).

S. Yadav, S.J. Shire, D.S. Kalonia. Viscosity analysis of high concentration bovine serum albumin aqueous solutions. Pharmaceut. Res. 28, 1973 (2011).

A.K. Gaigalas, J.B. Hubbard, M. McCurley, Sam Woo. Diffusion of bovine serum albumin in aqueous solutions. J. Phys. Chem. 96, 2355 (1992).

B. Jachimska, A. Pajor. Physico-chemical characterization of bovine serum albumin in solution and as deposited on surfaces. Bioelectrochemistry 87, 138 (2012).

K.H. Keller, E.R. Canales, S.I. Yum. Tracer and mutual diffusion coefficients of proteins. J. Phys. Chem. 75, 379 (1971).

C. Tanford, J.G. Buzzell. The viscosity of aqueous solutions of bovine serum albumin between pH 4.3 and 10.5. J. Phys. Chem. 60, 225 (1956).

V.N. Uversky, N.V. Narizhneva, T.V. Ivanova, A.Y. Tomashevski. Rigidity of human a-fetoprotein tertiary structure is under ligand control. Biochemistry 44, 13638 (1997).

R.S. Tu, V. Breedveld. Microrheological detection of protein unfolding. Phys. Rev. E 72, 041914 (2005).



How to Cite

Khorolskyi, O. V., & Moskalenko, Y. D. (2020). Calculation of the Macromolecular Size of Bovine Serum Albumin from the Viscosity of Its Aqueous Solutions. Ukrainian Journal of Physics, 65(1), 41.



Physics of liquids and liquid systems, biophysics and medical physics

Most read articles by the same author(s)