Tests of the CPT Invariance at the Antiproton Decelerator of CERN

Authors

  • D. Horváth Wigner Research Centre for Physics, Budapest, Hungary; and Institute of Nuclear Research (Atomki), Debrecen, Hungary

DOI:

https://doi.org/10.15407/ujpe64.7.589

Keywords:

Standard Model, CPT invariance, antiproton mass, antihydrogen, cosmic antimatter

Abstract

The Standard Model, the theory of particle physics is based on symmetries: both the structure of the composite particles and their interactions are derived using gauge invariance principles. Some of these are violated by the weak interaction like parity and CP symmetry, and even masses are created via spontaneous symmetry breaking. CPT invariance, the most essential symmetry of the Standard Model, states the equivalency of matter and antimatter. However, because of the lack of antimatter in our Universe it is continuously tested at CERN. We overview these experiments: measuring the properties of antiprotons as compared to those of the proton at the Antiproton Decelerator and also searching for antimatter in cosmic rays.

References

F. Wilczek. In search of symmetry lost. Nature 433, 239 (2005). https://doi.org/10.1038/nature03281

A.G. Cohen, A. De Rujula, S.L. Glashow. A matter - antimatter universe? Astrophys. J. 495, 539 (1998). https://doi.org/10.1086/305328

M. Charlton, J. Eades, D. Horvath, R.J. Hughes, C. Zimmermann. Anti-hydrogen physics. Phys. Rept. 241, 65 (1994). https://doi.org/10.1016/0370-1573(94)90081-7

G. Baur et al. Production of anti-hydrogen. Phys. Lett. B 368, 251 (1996).

G. Blanford et al. [E862 Collaboration]. Observation of atomic anti-hydrogen. Phys. Rev. Lett. 80, 3037 (1998). https://doi.org/10.1103/PhysRevLett.80.3037

J.S. Hangst. Fundamental physics with antihydrogen. Springer Tracts Mod. Phys. 256, 203 (2014). https://doi.org/10.1007/978-3-642-45201-7_6

P. Beloshitsky. Report on operation of antiproton decelerator. AIP Conf. Proc. 821 (1), 48 (2006). https://doi.org/10.1063/1.2190092

G. Gabrielse, S.L. Rolston, L. Haarsma, W. Kells. Antihydrogen production using trapped plasmas. Phys. Lett. A 129, 38 (1988). https://doi.org/10.1016/0375-9601(88)90470-7

B.I. Deutch, F.M. Jacobsen, L.H. Andersen, P. Hvelplund, H. Knudsen, M.H. Holzscheiter, M. Charlton, G. Laricchia. Anti-hydrogen production by positronium anti-proton collisions in an ion trap. Phys. Scripta T 22, 248 (1988). https://doi.org/10.1088/0031-8949/1988/T22/038

M. Ahmadi et al. Characterization of the 1S-2S transition in antihydrogen. Nature 557, 71 (2018).

M. Ahmadi et al. [ALPHA Collaboration]. Observation of the hyperfine spectrum of antihydrogen. Nature 548, 66 (2017).

M. Ahmadi et al. [ALPHA Collaboration]. Observation of the 1S-2P Lyman-a transition in antihydrogen. Nature 561, 211 (2018).

C. Amsler et al. [AEgIS Collaboration]. Velocity-selected production of 23S metastable positronium. Phys. Rev. A 99, 033405 (2019).

B. Mansouli [GBAR Collaboration]. Status of the GBAR experiment at CERN. Hyperfine Interact. 240, 11 (2019). https://doi.org/10.1007/s10751-018-1550-y

R.S. Hayano, M. Hori, D. Horvath, E. Widmann. Antiprotonic helium and CPT invariance. Rept. Prog. Phys. 70, 1995 (2007). https://doi.org/10.1088/0034-4885/70/12/R01

M. Hori et al. [ASACUSA Collaboration]. Two-photon laser spectroscopy of antiprotonic helium and the antiproton-to-electron mass ratio. Nature 475, 484 (2011). https://doi.org/10.1038/nature10260

M. Hori et al. [ASACUSA Collaboration]. Buffer-gas cooling of antiprotonic helium to 1.5 to 1.7 K, and antiproton-to-electron mass ratio. Science 354, 610 (2016). https://doi.org/10.1126/science.aaf6702

Y. Nagata et al. Progress of antihydrogen beam production using a double cusp trap. JPS Conf. Proc. 18, 011007 (2017). https://doi.org/10.7566/JPSCP.18.011007

S. Ulmer et al. [BASE Collaboration]. High-precision comparison of the antiproton-to-proton charge-to-mass ratio. Nature 524, 196 (2015). https://doi.org/10.1038/nature14861

S. Ulmer, A. Mooser, H. Nagahama, S. Sellner, C. Smorra. Challenging the standard model by high-precision comparisons of the fundamental properties of protons and antiprotons. Phil. Trans. Roy. Soc. Lond. A 376, 20170275 (2018). https://doi.org/10.1098/rsta.2017.0275

C. Smorra et al. [BASE Collaboration]. A parts-per-billion measurement of the antiproton magnetic moment. Nature 550, 371 (2017). https://doi.org/10.1038/nature24048

Downloads

Published

2019-09-17

How to Cite

Horváth, D. (2019). Tests of the CPT Invariance at the Antiproton Decelerator of CERN. Ukrainian Journal of Physics, 64(7), 589. https://doi.org/10.15407/ujpe64.7.589

Issue

Section

Special Issue