Magnon Bose–Einstein Condensate and Supercurrents Over a Wide Temperature Range

  • L. Mihalceanu Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universit¨at Kaiserslautern
  • D. A. Bozhko Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universit¨at Kaiserslautern, James Watt School of Engineering, University of Glasgow
  • V. I. Vasyuchka Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universit¨at Kaiserslautern
  • A. A. Serga Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universit¨at Kaiserslautern
  • B. Hillebrands Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universit¨at Kaiserslautern
  • A. Pomyalov Department of Chemical and Biological Physics, Weizmann Institute of Science
  • V. S. L'vov Department of Chemical and Biological Physics, Weizmann Institute of Science
  • V. S. Tyberkevych Department of Physics, Oakland University
Keywords: magnon gas, parametric pumping, Bose–Einstein condensate, magnon superfluidity, magnon supercurrent, yttrium iron garnet (YIG)

Abstract

Magnon Bose–Einstein Condensates (BECs) and supercurrents are coherent quantum phenomena, which appear on a macroscopic scale in parametrically populated solid state spin systems. One of the most fascinating and attractive features of these processes is the possibility of magnon condensation and supercurrent excitation even at room temperature. At the same time, valuable information about a magnon BEC state, such as its lifetime, its formation threshold, and coherence, is provided by experiments at various temperatures. Here, we use Brillouin Light Scattering (BLS) spectroscopy for the investigation of the magnon BEC dynamics in a single-crystal film of yttrium iron garnet in a wide temperature range from 30 K to 380K. By comparing the BLS results with previous microwave measurements, we revealed the direct relation between the damping of the condensed and the parametrically injected magnons. The enhanced supercurrent dynamics was detected at 180 K near the minimum of BEC damping.

References

G.A. Melkov, V.L. Safonov, A.Y. Taranenko, S.V. Sholom. Kinetic instability and Bose condensation of nonequilibrium magnons. J. Magn. Magn. Mater. 132, 180 (1994). https://doi.org/10.1016/0304-8853(94)90311-5

S.O. Demokritov, V.E. Demidov, O. Dzyapko, G.A. Melkov, A.A. Serga, B. Hillebrands, A.N. Slavin. Bose-Einstein condensation of quasi-equilibrium magnons at room temperature under pumping. Nature. 443, 430 (2006). https://doi.org/10.1038/nature05117

A.A. Serga, V.S. Tiberkevich, C.W. Sandweg, V.I. Vasyuchka, D.A. Bozhko, A.V. Chumak, T. Neumann, B. Obry, G.A. Melkov, A.N. Slavin, B. Hillebrands. Bose-Einstein condensation in an ultra-hot gas of pumped magnons. Nat. Commun. 5, 3452 (2014). https://doi.org/10.1038/ncomms4452

A.I. Bugrij, V.M. Loktev. On the theory of Bose-Einstein condensation of quasiparticles: On the possibility of condensation of ferromagnons at high temperatures. Low Temp. Phys. 33, 37 (2007). https://doi.org/10.1063/1.2409633

S.M. Rezende. Theory of coherence in Bose-Einstein condensation phenomena in a microwave-driven interacting magnon gas. Phys. Rev. B 79, 174411 (2009). https://doi.org/10.1103/PhysRevB.79.174411

Y.M. Bunkov, V.L. Safonov. Magnon condensation and spin superfluidity. J. Magn. Magn. Mater. 452, 30 (2018). https://doi.org/10.1016/j.jmmm.2017.12.029

D.A. Bozhko, A.A. Serga, P. Clausen, V.I. Vasyuchka, F. Heussner, G.A. Melkov, A. Pomyalov, V.S. L'vov, B. Hillebrands. Supercurrent in a room-temperature Bose-Einstein magnon condensate. Nat. Phys. 12, 1057 (2016). https://doi.org/10.1038/nphys3838

P. Nowik-Boltyk, O. Dzyapko, V.E. Demidov, N.G. Berloff, S.O. Demokritov. Spatially non-uniform ground state and quantized vortices in a two-component Bose-Einstein condensate of magnons. Sci. Rep. 2, 482 (2012). https://doi.org/10.1038/srep00482

D.A. Bozhko, A.J.E. Kreil, H.Yu. Musiienko-Shmarova, A.A. Serga, A. Pomyalov, V.S. L'vov, B. Hillebrands. Bogoliubov waves and distant transport of magnon condensate at room temperature. Nat. Commun. 10, 2460 (2019). https://doi.org/10.1038/s41467-019-10118-y

A.V. Chumak, V.I. Vasyuchka, A.A. Serga, B. Hillebrands. Magnon spintronics. Nat. Phys. 11, 453 (2015). https://doi.org/10.1038/nphys3347

K. Nakata, K.A. van Hoogdalem, P. Simon, D. Loss. Josephson and persistent spin currents in Bose-Einstein condensates of magnons. Phys. Rev. B 90, 144419 (2014). https://doi.org/10.1103/PhysRevB.90.144419

K. Nakata, P. Simon, D. Loss. Magnon transport through microwave pumping. Phys. Rev. B 92, 014422 (2015). https://doi.org/10.1103/PhysRevB.92.014422

H. Skarsv?ag, C. Holmqvist, A. Brataas. Spin superfluidity and long-range transport in thin-film ferromagnets. Phys. Rev. Lett. 115, 237201 (2015). https://doi.org/10.1103/PhysRevLett.115.237201

V.I. Sugakov. Formation of new phase inclusions in the system of quasiequilibrium magnons of high density. Phys. Rev. B 94, 014407 (2016). https://doi.org/10.1103/PhysRevB.94.014407

B. Flebus, S.A. Bender, Y. Tserkovnyak, R.A. Duine. Two-fluid theory for spin superfluidity in magnetic insulators. Phys. Rev. Lett. 116, 117201 (2016). https://doi.org/10.1103/PhysRevLett.116.117201

V. Tiberkevich, I.V. Borisenko, P. Nowik-Boltyk, V.E. Demidov, A.B. Rinkevich, S.O. Demokritov, A.N. Slavin. Excitation of coherent second sound waves in a dense magnon gas. Sci. Rep. 9, 9063 (2019). https://doi.org/10.1038/s41598-019-44956-z

C. Safranski, I. Barsukov, H.K. Lee, T. Schneider, A.A. Jara, A. Smith, H. Chang, K. Lenz, J. Lindner, Y. Tserkovnyak, M. Wu, I.N. Krivorotov. Spin caloritronic nano-oscillator. Nat. Commun. 8, 117 (2017). https://doi.org/10.1038/s41467-017-00184-5

M. Schneider, T. Br?acher, V. Lauer, P. Pirro, D.A. Bozhko, A.A. Serga, H.Yu. Musiienko-Shmarova, B. Heinz, Q. Wang, T. Meyer, F. Heussner, S. Keller, E.Th. Papaioannou, B. L?agel, T. L?ober, V.S. Tiberkevich, A.N. Slavin, C. Dubs, B. Hillebrands, A.V. Chumak. Bose-Einstein condensation of quasi-particles by rapid cooling. arXiv:1612.07305v2 (2018).

D.A. Bozhko, P. Clausen, G.A. Melkov, V.S. L'vov, A. Pomyalov, V.I. Vasyuchka, A.V. Chumak, B. Hillebrands, A.A. Serga. Bottleneck accumulation of hybrid magnetoelastic bosons. Phys. Rev. Lett. 118, 237201 (2017). https://doi.org/10.1103/PhysRevLett.118.237201

V. Cherepanov, I. Kolokolov, V. L'vov. The saga of YIG: Spectra, thermodynamics, interaction and relaxation of magnons in a complex magnet. Phys. Rep. - Rev. Sec. Phys. Lett. 229, 81 (1993). https://doi.org/10.1016/0370-1573(93)90107-O

L. Mihalceanu, V.I. Vasyuchka, D.A. Bozhko, T. Langner, A.Yu. Nechiporuk, V.F. Romanyuk, B. Hillebrands, A.A. Serga. Temperature-dependent relaxation of dipole-exchange magnons in yttrium iron garnet films. Phys. Rev. B 97, 214405 (2018). https://doi.org/10.1103/PhysRevB.97.214405

A.A. Serga, C.W. Sandweg, V.I. Vasyuchka, M.B. Jungfleisch, B. Hillebrands, A. Kreisel, P. Kopietz, M.P. Kostylev. Brillouin light scattering spectroscopy of parametrically excited dipole-exchange magnons. Phys. Rev. B 86, 134403 (2012). https://doi.org/10.1103/PhysRevB.86.134403

T. Neumann, A.A. Serga, V.I. Vasyuchka, B. Hillebrands. Field-induced transition from parallel to perpendicular parametric pumping for a microstrip transducer. Appl. Phys. Lett. 94, 192502 (2009). https://doi.org/10.1063/1.3130088

A.G. Gurevich, G.A. Melkov, Magnetization oscillations and waves (CRC Press, 1996) [ISBN: 9780849394607].

G.A. Melkov, A.A. Serga, A.N. Slavin, V.S. Tiberkevich, A.N. Oleinik, A.V. Bagada. Parametric interaction of magnetostatic waves with a nonstationary local pump. J. Exp. Theor. Phys. 89, 1189 (1999). https://doi.org/10.1134/1.559071

V. Demidov, O. Dzyapko, S. Demokritov, G. Melkov, A. Slavin. Thermalization of a parametrically driven magnon gas leading to Bose-Einstein condensation. Phys. Rev. Lett. 99, 037205 (2007). https://doi.org/10.1103/PhysRevLett.99.037205

J. Hick, T. Kloss, P. Kopietz. Thermalization of magnons in yttrium-iron garnet: Nonequilibrium functional renormalization group approach. Phys. Rev. B 86, 184417 (2012). https://doi.org/10.1103/PhysRevB.86.184417

P. Clausen, D.A. Bozhko, V.I. Vasyuchka, B. Hillebrands, G.A. Melkov, A.A. Serga. Stimulated thermalization of a parametrically driven magnon gas as a prerequisite for Bose-Einstein magnon condensation. Phys. Rev. B 91, 220402 (2015). https://doi.org/10.1103/PhysRevB.91.220402

V.E. Demidov, O. Dzyapko, M. Buchmeier, T. Stockhoff, G. Schmitz, G.A. Melkov, S.O. Demokritov. Magnon kinetics and Bose-Einstein condensation studied in phase space. Phys. Rev. Lett. 101, 257201 (2008). https://doi.org/10.1103/PhysRevLett.101.257201

D.A. Bozhko, P. Clausen, A.V. Chumak, Y.V. Kobljanskyj, B. Hillebrands, A.A. Serga. Formation of Bose-Einstein magnon condensate via dipolar and exchange thermalization channels. Low Temp. Phys. 41, 801 (2015). https://doi.org/10.1063/1.4932354

S.O. Demokritov, B. Hillebrands, A.N. Slavin. Brillouin light scattering studies of confined spin waves: linear and nonlinear confinement. Phys. Rep. 348, 441 (2001). https://doi.org/10.1016/S0370-1573(00)00116-2

C.W. Sandweg, M.B. Jungfleisch, V.I. Vasyuchka, A.A. Serga, P. Clausen, H. Schultheiss, B. Hillebrands, A. Kreisel, P. Kopietz. Wide-range wavevector selectivity of magnon gases in Brillouin light scattering spectroscopy. Rev. Sci. Instrum. 81, 073902 (2010). https://doi.org/10.1063/1.3454918

A.V. Lavrinenko, V.S. L'vov, G.A. Melkov, V.B. Cherepanov. "Kinetic" instability of a strongly nonequilibrium system of spin waves and tunable radiation of a ferrite. Sov. Phys. JETP 54, 542 (1981).

G.A. Melkov, S.V. Sholom. Kinetic instability of spin waves in thin ferrite films. Sov. Phys. JETP 72, 341 (1991).

A.J.E. Kreil, D.A. Bozhko, H.Yu. Musiienko-Shmarova, V.I. Vasyuchka, V.S. L'vov, A. Pomyalov, B. Hillebrands, A.A. Serga. From kinetic instability to Bose-Einstein condensation and magnon supercurrents. Phys. Rev. Lett. 121 077203 (2018). https://doi.org/10.1103/PhysRevLett.121.077203

V.V. Danilov, D.L. Lyfar', Yu.V. Lyubon'ko, A.Yu. Nechiporuk, S.M. Ryabchenko. Low-temperature ferromagnetic resonance in epitaxial garnet films on paramagnetic substrates. Sov. Phys. Journal 32, 276 (1989). https://doi.org/10.1007/BF00897267

I. Boventer, M. Pfirrmann, J. Krause, Y. Sch?on, M. Kl?aui, M. Weides. Complex temperature dependence of coupling and dissipation of cavity magnon polaritons from millikelvin to room temperature. Phys. Rev. B 97, 184420 (2018). https://doi.org/10.1103/PhysRevB.97.184420

S. Kosen, A.F. van Loo, D.A. Bozhko, L. Mihalceanu, A.D. Karenowska. Microwave magnon damping in YIG films at millikelvin temperatures. arXiv: 1903.02527 (2019). https://doi.org/10.1063/1.5115266

A.J.E. Kreil, H.Yu. Musiienko-Shmarova, D.A. Bozhko, S. Eggert, A.A. Serga, B. Hillebrands, A. Pomyalov, V.S. L'vov. Tunable space-time crystal in room-temperature magnetodielectrics. Phys. Rev. B Rapid Commun. (2019). https://doi.org/10.1103/PhysRevB.100.020406

V.V. Danilov, A.Yu. Nechiporuk, L.V. Chevnyuk. Temperature dependences of paramagnetic excitation threshold and relaxation parameter of spin waves in garnet structures. Low Temp. Phys. 22, 802 (1996).

Published
2019-11-01
How to Cite
Mihalceanu, L., Bozhko, D., Vasyuchka, V., Serga, A., Hillebrands, B., Pomyalov, A., L’vov, V., & Tyberkevych, V. (2019). Magnon Bose–Einstein Condensate and Supercurrents Over a Wide Temperature Range. Ukrainian Journal of Physics, 64(10), 927. https://doi.org/10.15407/ujpe64.10.927
Section
Physics of magnetic phenomena and physics of ferroics

Most read articles by the same author(s)