Magnon Bose–Einstein Condensate and Supercurrents Over a Wide Temperature Range
DOI:
https://doi.org/10.15407/ujpe64.10.927Keywords:
magnon gas, parametric pumping, Bose–Einstein condensate, magnon superfluidity, magnon supercurrent, yttrium iron garnet (YIG)Abstract
Magnon Bose–Einstein Condensates (BECs) and supercurrents are coherent quantum phenomena, which appear on a macroscopic scale in parametrically populated solid state spin systems. One of the most fascinating and attractive features of these processes is the possibility of magnon condensation and supercurrent excitation even at room temperature. At the same time, valuable information about a magnon BEC state, such as its lifetime, its formation threshold, and coherence, is provided by experiments at various temperatures. Here, we use Brillouin Light Scattering (BLS) spectroscopy for the investigation of the magnon BEC dynamics in a single-crystal film of yttrium iron garnet in a wide temperature range from 30 K to 380K. By comparing the BLS results with previous microwave measurements, we revealed the direct relation between the damping of the condensed and the parametrically injected magnons. The enhanced supercurrent dynamics was detected at 180 K near the minimum of BEC damping.
References
G.A. Melkov, V.L. Safonov, A.Y. Taranenko, S.V. Sholom. Kinetic instability and Bose condensation of nonequilibrium magnons. J. Magn. Magn. Mater. 132, 180 (1994). https://doi.org/10.1016/0304-8853(94)90311-5
S.O. Demokritov, V.E. Demidov, O. Dzyapko, G.A. Melkov, A.A. Serga, B. Hillebrands, A.N. Slavin. Bose-Einstein condensation of quasi-equilibrium magnons at room temperature under pumping. Nature. 443, 430 (2006). https://doi.org/10.1038/nature05117
A.A. Serga, V.S. Tiberkevich, C.W. Sandweg, V.I. Vasyuchka, D.A. Bozhko, A.V. Chumak, T. Neumann, B. Obry, G.A. Melkov, A.N. Slavin, B. Hillebrands. Bose-Einstein condensation in an ultra-hot gas of pumped magnons. Nat. Commun. 5, 3452 (2014). https://doi.org/10.1038/ncomms4452
A.I. Bugrij, V.M. Loktev. On the theory of Bose-Einstein condensation of quasiparticles: On the possibility of condensation of ferromagnons at high temperatures. Low Temp. Phys. 33, 37 (2007). https://doi.org/10.1063/1.2409633
S.M. Rezende. Theory of coherence in Bose-Einstein condensation phenomena in a microwave-driven interacting magnon gas. Phys. Rev. B 79, 174411 (2009). https://doi.org/10.1103/PhysRevB.79.174411
Y.M. Bunkov, V.L. Safonov. Magnon condensation and spin superfluidity. J. Magn. Magn. Mater. 452, 30 (2018). https://doi.org/10.1016/j.jmmm.2017.12.029
D.A. Bozhko, A.A. Serga, P. Clausen, V.I. Vasyuchka, F. Heussner, G.A. Melkov, A. Pomyalov, V.S. L'vov, B. Hillebrands. Supercurrent in a room-temperature Bose-Einstein magnon condensate. Nat. Phys. 12, 1057 (2016). https://doi.org/10.1038/nphys3838
P. Nowik-Boltyk, O. Dzyapko, V.E. Demidov, N.G. Berloff, S.O. Demokritov. Spatially non-uniform ground state and quantized vortices in a two-component Bose-Einstein condensate of magnons. Sci. Rep. 2, 482 (2012). https://doi.org/10.1038/srep00482
D.A. Bozhko, A.J.E. Kreil, H.Yu. Musiienko-Shmarova, A.A. Serga, A. Pomyalov, V.S. L'vov, B. Hillebrands. Bogoliubov waves and distant transport of magnon condensate at room temperature. Nat. Commun. 10, 2460 (2019). https://doi.org/10.1038/s41467-019-10118-y
A.V. Chumak, V.I. Vasyuchka, A.A. Serga, B. Hillebrands. Magnon spintronics. Nat. Phys. 11, 453 (2015). https://doi.org/10.1038/nphys3347
K. Nakata, K.A. van Hoogdalem, P. Simon, D. Loss. Josephson and persistent spin currents in Bose-Einstein condensates of magnons. Phys. Rev. B 90, 144419 (2014). https://doi.org/10.1103/PhysRevB.90.144419
K. Nakata, P. Simon, D. Loss. Magnon transport through microwave pumping. Phys. Rev. B 92, 014422 (2015). https://doi.org/10.1103/PhysRevB.92.014422
H. Skarsv?ag, C. Holmqvist, A. Brataas. Spin superfluidity and long-range transport in thin-film ferromagnets. Phys. Rev. Lett. 115, 237201 (2015). https://doi.org/10.1103/PhysRevLett.115.237201
V.I. Sugakov. Formation of new phase inclusions in the system of quasiequilibrium magnons of high density. Phys. Rev. B 94, 014407 (2016). https://doi.org/10.1103/PhysRevB.94.014407
B. Flebus, S.A. Bender, Y. Tserkovnyak, R.A. Duine. Two-fluid theory for spin superfluidity in magnetic insulators. Phys. Rev. Lett. 116, 117201 (2016). https://doi.org/10.1103/PhysRevLett.116.117201
V. Tiberkevich, I.V. Borisenko, P. Nowik-Boltyk, V.E. Demidov, A.B. Rinkevich, S.O. Demokritov, A.N. Slavin. Excitation of coherent second sound waves in a dense magnon gas. Sci. Rep. 9, 9063 (2019). https://doi.org/10.1038/s41598-019-44956-z
C. Safranski, I. Barsukov, H.K. Lee, T. Schneider, A.A. Jara, A. Smith, H. Chang, K. Lenz, J. Lindner, Y. Tserkovnyak, M. Wu, I.N. Krivorotov. Spin caloritronic nano-oscillator. Nat. Commun. 8, 117 (2017). https://doi.org/10.1038/s41467-017-00184-5
M. Schneider, T. Br?acher, V. Lauer, P. Pirro, D.A. Bozhko, A.A. Serga, H.Yu. Musiienko-Shmarova, B. Heinz, Q. Wang, T. Meyer, F. Heussner, S. Keller, E.Th. Papaioannou, B. L?agel, T. L?ober, V.S. Tiberkevich, A.N. Slavin, C. Dubs, B. Hillebrands, A.V. Chumak. Bose-Einstein condensation of quasi-particles by rapid cooling. arXiv:1612.07305v2 (2018).
D.A. Bozhko, P. Clausen, G.A. Melkov, V.S. L'vov, A. Pomyalov, V.I. Vasyuchka, A.V. Chumak, B. Hillebrands, A.A. Serga. Bottleneck accumulation of hybrid magnetoelastic bosons. Phys. Rev. Lett. 118, 237201 (2017). https://doi.org/10.1103/PhysRevLett.118.237201
V. Cherepanov, I. Kolokolov, V. L'vov. The saga of YIG: Spectra, thermodynamics, interaction and relaxation of magnons in a complex magnet. Phys. Rep. - Rev. Sec. Phys. Lett. 229, 81 (1993). https://doi.org/10.1016/0370-1573(93)90107-O
L. Mihalceanu, V.I. Vasyuchka, D.A. Bozhko, T. Langner, A.Yu. Nechiporuk, V.F. Romanyuk, B. Hillebrands, A.A. Serga. Temperature-dependent relaxation of dipole-exchange magnons in yttrium iron garnet films. Phys. Rev. B 97, 214405 (2018). https://doi.org/10.1103/PhysRevB.97.214405
A.A. Serga, C.W. Sandweg, V.I. Vasyuchka, M.B. Jungfleisch, B. Hillebrands, A. Kreisel, P. Kopietz, M.P. Kostylev. Brillouin light scattering spectroscopy of parametrically excited dipole-exchange magnons. Phys. Rev. B 86, 134403 (2012). https://doi.org/10.1103/PhysRevB.86.134403
T. Neumann, A.A. Serga, V.I. Vasyuchka, B. Hillebrands. Field-induced transition from parallel to perpendicular parametric pumping for a microstrip transducer. Appl. Phys. Lett. 94, 192502 (2009). https://doi.org/10.1063/1.3130088
A.G. Gurevich, G.A. Melkov, Magnetization oscillations and waves (CRC Press, 1996) [ISBN: 9780849394607].
G.A. Melkov, A.A. Serga, A.N. Slavin, V.S. Tiberkevich, A.N. Oleinik, A.V. Bagada. Parametric interaction of magnetostatic waves with a nonstationary local pump. J. Exp. Theor. Phys. 89, 1189 (1999). https://doi.org/10.1134/1.559071
V. Demidov, O. Dzyapko, S. Demokritov, G. Melkov, A. Slavin. Thermalization of a parametrically driven magnon gas leading to Bose-Einstein condensation. Phys. Rev. Lett. 99, 037205 (2007). https://doi.org/10.1103/PhysRevLett.99.037205
J. Hick, T. Kloss, P. Kopietz. Thermalization of magnons in yttrium-iron garnet: Nonequilibrium functional renormalization group approach. Phys. Rev. B 86, 184417 (2012). https://doi.org/10.1103/PhysRevB.86.184417
P. Clausen, D.A. Bozhko, V.I. Vasyuchka, B. Hillebrands, G.A. Melkov, A.A. Serga. Stimulated thermalization of a parametrically driven magnon gas as a prerequisite for Bose-Einstein magnon condensation. Phys. Rev. B 91, 220402 (2015). https://doi.org/10.1103/PhysRevB.91.220402
V.E. Demidov, O. Dzyapko, M. Buchmeier, T. Stockhoff, G. Schmitz, G.A. Melkov, S.O. Demokritov. Magnon kinetics and Bose-Einstein condensation studied in phase space. Phys. Rev. Lett. 101, 257201 (2008). https://doi.org/10.1103/PhysRevLett.101.257201
D.A. Bozhko, P. Clausen, A.V. Chumak, Y.V. Kobljanskyj, B. Hillebrands, A.A. Serga. Formation of Bose-Einstein magnon condensate via dipolar and exchange thermalization channels. Low Temp. Phys. 41, 801 (2015). https://doi.org/10.1063/1.4932354
S.O. Demokritov, B. Hillebrands, A.N. Slavin. Brillouin light scattering studies of confined spin waves: linear and nonlinear confinement. Phys. Rep. 348, 441 (2001). https://doi.org/10.1016/S0370-1573(00)00116-2
C.W. Sandweg, M.B. Jungfleisch, V.I. Vasyuchka, A.A. Serga, P. Clausen, H. Schultheiss, B. Hillebrands, A. Kreisel, P. Kopietz. Wide-range wavevector selectivity of magnon gases in Brillouin light scattering spectroscopy. Rev. Sci. Instrum. 81, 073902 (2010). https://doi.org/10.1063/1.3454918
A.V. Lavrinenko, V.S. L'vov, G.A. Melkov, V.B. Cherepanov. "Kinetic" instability of a strongly nonequilibrium system of spin waves and tunable radiation of a ferrite. Sov. Phys. JETP 54, 542 (1981).
G.A. Melkov, S.V. Sholom. Kinetic instability of spin waves in thin ferrite films. Sov. Phys. JETP 72, 341 (1991).
A.J.E. Kreil, D.A. Bozhko, H.Yu. Musiienko-Shmarova, V.I. Vasyuchka, V.S. L'vov, A. Pomyalov, B. Hillebrands, A.A. Serga. From kinetic instability to Bose-Einstein condensation and magnon supercurrents. Phys. Rev. Lett. 121 077203 (2018). https://doi.org/10.1103/PhysRevLett.121.077203
V.V. Danilov, D.L. Lyfar', Yu.V. Lyubon'ko, A.Yu. Nechiporuk, S.M. Ryabchenko. Low-temperature ferromagnetic resonance in epitaxial garnet films on paramagnetic substrates. Sov. Phys. Journal 32, 276 (1989). https://doi.org/10.1007/BF00897267
I. Boventer, M. Pfirrmann, J. Krause, Y. Sch?on, M. Kl?aui, M. Weides. Complex temperature dependence of coupling and dissipation of cavity magnon polaritons from millikelvin to room temperature. Phys. Rev. B 97, 184420 (2018). https://doi.org/10.1103/PhysRevB.97.184420
S. Kosen, A.F. van Loo, D.A. Bozhko, L. Mihalceanu, A.D. Karenowska. Microwave magnon damping in YIG films at millikelvin temperatures. arXiv: 1903.02527 (2019). https://doi.org/10.1063/1.5115266
A.J.E. Kreil, H.Yu. Musiienko-Shmarova, D.A. Bozhko, S. Eggert, A.A. Serga, B. Hillebrands, A. Pomyalov, V.S. L'vov. Tunable space-time crystal in room-temperature magnetodielectrics. Phys. Rev. B Rapid Commun. (2019). https://doi.org/10.1103/PhysRevB.100.020406
V.V. Danilov, A.Yu. Nechiporuk, L.V. Chevnyuk. Temperature dependences of paramagnetic excitation threshold and relaxation parameter of spin waves in garnet structures. Low Temp. Phys. 22, 802 (1996).
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.