Diffractive Physics at the LHC

  • M. Trzebiński Institute of Nuclear Physics Polish Academy of Sciences
Keywords: LHC, AFP, ALFA, TOTEM, pomeron, diffraction, exclusive processes, beyond standard model

Abstract

Diffractive processes possible to be measured at the LHC are listed and briefly discussed. This includes soft (elastic scattering, exclusive meson pair production, diffractive bremsstrahlung) and hard (single and double Pomeron exchange jets, y +jet, W/Z, jet-gap-jet, exclusive jets) processes as well as Beyond Standard Model phenomena (anomalous gauge couplings, magnetic monopoles).

References

ATLAS Collaboration. The ATLAS experiment at the CERN Large Hadron Collider. JINST 3, S08003 (2008).

ATLAS Luminosity and Forward Physics Community. Technical Design Report, CERN-LHCC-2008-004.

S. Abdel Khalek et al. The ALFA Roman Pot Detectors of ATLAS. JINST 11, P11013 (2016). https://doi.org/10.1088/1748-0221/11/11/P11013

ATLAS Collaboration. Technical Design Report for the ATLAS Forward Proton Detector, CERN-LHCC-2015- 009, ATLAS-TDR-024.

CMS Collaboration. The CMS experiment at the CERN large hadron collider. JINST 3, S08004 (2008).

TOTEM Collaboration. Technical Design Report CERN- LHCC-2004-002.

TOTEM Collaboration. TOTEM Upgrade Proposal CERN-LHCC-2013-009.

M. Trzebinski. Machine optics studies for the LHC measurements. In Proceedings of XXXIV-th IEEE-SPIE Joint Symposium, SPIE 0277-786X, vol. 9290, (2014), p. 26.

ATLAS Collaboration. Measurement of the total cross section from elastic scattering in pp collisions at vs = 7 TeV with the ATLAS detector. Nucl. Phys. B 889, 486 (2014).

TOTEM Collaboration. Proton-proton elastic scattering at the LHC energy of vs = 7 TeV. EPL 95, (2011).

ATLAS Collaboration. Measurement of the total cross section from elastic scattering in pp collisions at vs = 8 TeV with the ATLAS detector. Phys. Lett. B 761, 158 (2016).

TOTEM Collaboration. Measurement of elastic pp scattering at vs = 8 TeV in the coulomb-nuclear interference region - determination of the p parameter and the total cross-section. Eur. Phys. J. C 76, 661 (2016).

TOTEM Collaboration. First measurement of elastic, inelastic and total cross-section at vs = 13 TeV by TOTEM and overview of cross-section data at LHC energies. Eur. Phys. J. C 79, 103 (2019).

V.A. Khoze, J.W. Lamsa, R. Orava, M.G. Ryskin. Forward physics at the LHC: Detecting elastic pp scattering by radiative photons. JINST 6, P01005 (2011). https://doi.org/10.1088/1748-0221/6/01/P01005

P. Lebiedowicz, A. Szczurek. Exclusive diffractive photon bremsstrahlung at the LHC. Phys. Rev. D 87, 114013 (2013). https://doi.org/10.1103/PhysRevD.87.114013

J.J. Chwastowski, S. Czekierda, R. Staszewski, M. Trzebinski. Diffractive bremsstrahlung at high-B* LHC case study. Eur. Phys. J. C 77, 216 (2017). https://doi.org/10.1140/epjc/s10052-017-4789-6

P. Lebiedowicz, O. Nachtmann, A. Szczurek. Central exclusive diffractive production of п+п? continuum, scalar and tensor resonances in pp and pp scattering within tensor pomeron approach. Phys. Rev. D 93, 054015 (2016). https://doi.org/10.1103/PhysRevD.93.054015

P. Lebiedowicz, O. Nachtmann, A. Szczurek. Exclusive central diffractive production of scalar and pseudoscalar mesons tensorial vs. vectorial pomeron. Annals Phys. 344, 301 (2014). https://doi.org/10.1016/j.aop.2014.02.021

P. Lebiedowicz, O. Nachtmann, A. Szczurek. The p0 and Drell-Soding contributions to central exclusive production of п+п? pairs in proton-proton collisions at high energies. Phys. Rev. D 91, 074023 (2015). https://doi.org/10.1103/PhysRevD.91.074023

R.A. Kycia, J. Chwastowski, R. Staszewski, J. Turnau. GenEx: A simple generator structure for exclusive processes in high energy collisions. Commun. Comput. Phys. 24, 860 (2018). https://doi.org/10.4208/cicp.OA-2017-0105

P. Erland, R. Staszewski, M. Trzebinski, R. Kycia. Elastic hadron scattering in various Pomeron models. Acta Phys. Pol. B 48, 981 (2017). https://doi.org/10.5506/APhysPolB.48.981

R.A. Kycia, J. Turnau, J.J. Chwastowski, R. Staszewski, M. Trzebinski. The adaptive Monte Carlo toolbox for phase space integration and generation. Commun. Comput. Phys. 25, 1547 (2019). https://doi.org/10.4208/cicp.OA-2018-0028

A.B. Kaidalov, V.A. Khoze, A.D. Martin, M.G. Ryskin. Probabilities of rapidity gaps in high energy interactions. Eur. Phys. J. C 21, 521 (2001). https://doi.org/10.1007/s100520100751

C. Royon. Forward physics with tagged protons at the LHC: QCD and anomalous couplings. In Proceedings of the Low x 2013 workshop (Weizmann Institute of Sci., 2013).

C. Marquet, C. Royon, M. Saimpert, D. Werder. Probing the Pomeron structure using dijets and y+jet events at the LHC. Phys.Rev. D 88, 074029 (2013). https://doi.org/10.1103/PhysRevD.88.074029

K. Golec-Biernat, C. Royon, L. Schoeffel, R. Staszewski. Electroweak vector boson production at the LHC as a probe of mechanisms of diffraction. Phys. Rev. D 84, 114006 (2011). https://doi.org/10.1103/PhysRevD.84.114006

L.N. Lipatov. Reggeization of the vector meson and the vacuum singularity in non-Abelian Gauge theories. Sov. J. Nucl. Phys. 23, 338 (1976).

E.A Kuraev, L.N. Lipatov, V.S. Fadin. The pomeranchuk singularity in non-Abelian Gauge theories. Sov. Phys. JETP 45, 199 (1977).

I.I. Balitsky, L.N. Lipatov. The Pomeranchuk singularity in quantum chromodynamics. Sov. J. Nucl. Phys. 28, 822 (1978).

C. Marquet, C. Royon, M. Trzebinski, R. Zlebcik. Gaps between jets in double-Pomeron-exchange processes at the LHC. Phys. Rev. D 87, 034010 (2013). https://doi.org/10.1103/PhysRevD.87.034010

K. Akiba et al. LHC Forward Physics, SLAC-PUB-16364, DESY 15-167.

V.A. Khoze, A.D. Martin, M.G. Ryskin. Central jet production as a probe of the perturbative formalism for exclusive diffraction. Eur. Phys. J. C 48, 467 (2006). https://doi.org/10.1140/epjc/s10052-006-0025-5

M.G. Albrow, T.D. Coughlin, J.R. Forshaw. Central exclusive particle production at high energy hadron colliders. Prog. Part. Nucl. Phys. 65, 149 (2010). https://doi.org/10.1016/j.ppnp.2010.06.001

V.V. Sudakov. Vertex parts at very high energies in quantum electrodynamics. Sov. Phys. J. E. T. P. 30, 65 (1956).

ATLAS Collaboration. Exclusive jet production with forward proton tagging feasibility studies for the AFP project, ATL-PHYS-PUB-2015-003.

M. Trzebinski, R. Staszewski, J. Chwastowski. On the possibility of measuring the single-tagged exclusive jets at the LHC. Eur. Phys. J. C 75, 320 (2015). https://doi.org/10.1140/epjc/s10052-015-3541-3

M. Trzebinski. Exclusive jet measurement in special LHC runs - feasibility studies. Acta Phys. Pol. B 47, 1745 (2016). https://doi.org/10.5506/APhysPolB.47.1745

E. Chapon et al. Anomalous quartic yyWW, yyZZ, and trilinear WWy couplings in two-photon processes at high luminosity at the LHC. Phys. Rev. D 81, 074003 (2010). https://doi.org/10.1103/PhysRevD.81.074003

S. Fichet et al. Probing new physics in diphoton production with proton tagging at the Large Hadron Collider. Phys. Rev. D 89, 114004 (2014). https://doi.org/10.1103/PhysRevD.89.114004

Published
2019-09-18
How to Cite
Trzebiński, M. (2019). Diffractive Physics at the LHC. Ukrainian Journal of Physics, 64(8), 772. https://doi.org/10.15407/ujpe64.8.772
Section
New Trends in High-Energy Physics (Conference materials)