On the Centrality Determination with Forward Proton Detectors

Authors

  • K. Cieśla The Henryk Niewodnicza´nski Institute of Nuclear Physics, Polish Academy of Sciences
  • R. Staszewski The Henryk Niewodnicza´nski Institute of Nuclear Physics, Polish Academy of Sciences
  • J. J. Chwastowski The Henryk Niewodnicza´nski Institute of Nuclear Physics, Polish Academy of Sciences

DOI:

https://doi.org/10.15407/ujpe64.7.554

Keywords:

heavy-ion physics, impact parameter, forward detectors

Abstract

The forward proton detectors, already installed at the Large Hadron Collider, are studied in the context of heavy-ion collisions. The potential of such detectors in measuring the nuclear debris coming from the spectator fragments is presented. The geometric acceptance of the forward proton detectors for different debris is estimated. The impact of experimental conditions and the Fermi motion on the acceptance is studied. A possibility of the collision impact parameter reconstruction from the measurement of nuclear fragments is discussed.

References

L. Evans, P. Bryant. LHC machine. JINST 3, S08001 (2008). https://doi.org/10.1088/1748-0221/3/08/S08001

F. Antinori, A. Dainese, P. Giubellino, V. Greco, M.P. Lombardo, E. Scomparin. Proc., 27th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2018): Venice, Italy, May 14-19, 2018. Nucl. Phys. A 982, 1 (2019). https://doi.org/10.1016/S0375-9474(18)30496-2

ATLAS Collaboration. Technical Design Report for the ATLAS Forward Proton Detector. CERN-LHCC-2015-009, ATLAS-TDR-024.

ATLAS Collaboration. ATLAS Forward Detectors for Measurement of Elastic Scattering and Luminosity. CERN-LHCC-2008-004, ATLAS-TDR-018.

CMS-TOTEM Collaboration. CMS-TOTEM Precision Proton Spectrometer. CERN-LHCC-2014-021, TOTEM-TDR-003, CMS-TDR-13.

TOTEM Collaboration. The TOTEM experiment at the CERN Large Hadron Collider. JINST 3, S08007 (2008).

S. Grinstein, M. Baselga, M. Boscardin, M. Christophersen, C. Da Via et al. Beam test studies of 3D pixel sensors irradiated non-uniformly for the ATLAS forward physics detector. Nucl. Instrum. Meth. A 730, 28 (2013). https://doi.org/10.21236/ADA578254

J. Lange et al.. Beam tests of an integrated prototype of the ATLAS forward proton detector. JINST 11, P09005 (2016). https://doi.org/10.1088/1748-0221/11/09/P09005

MAD - Methodical Accelerator Design. https://mad.web.cern.ch/mad/.

LHC Optics Web Home. http://cern.ch/lhcoptics.

S. Roesler, R. Engel, J. Ranft. The Monte Carlo event generator DPMJET-III. In: Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications. Edit. by A. Kling, F.J.C. Bar?ao, M. Nakagawa, L. T?avora, P. Vaz (Springer, 2001). https://doi.org/10.2172/784830

S. Tarafdar, Z. Citron, A. Milov. A centrality detector concept. Nucl. Instrum. Meth. A 768, 170 (2014). https://doi.org/10.1016/j.nima.2014.09.060

R. Staszewski, K. Cie?sla, J. J. Chwastowski. Forward proton detectors in heavy ion physics. In: XXV Cracow EPIPHANY Conference on Advances in Heavy Ion Physics, 8-11 January (2019). https://doi.org/10.5506/APhysPolB.50.1229

Downloads

Published

2019-09-17

How to Cite

Cieśla, K., Staszewski, R., & Chwastowski, J. J. (2019). On the Centrality Determination with Forward Proton Detectors. Ukrainian Journal of Physics, 64(7), 554. https://doi.org/10.15407/ujpe64.7.554

Issue

Section

Special Issue