Heavy-Ion and Fixed-Target Physics in LHCb

  • V. Pugatch Institute for Nuclear Research, Nat. Acad. of Sci. of Ukraine
Keywords: high-ehergy physics, heavy ions, LHCb experiment, nuclear modification factor, quark-gluon plasma

Abstract

Selected results of the LHCb experiment on heavy ion collisions studied in the collider and fixed-target modes are presented. The clear evidence of the impact of the production mechanism (prompt/delayed, p-p or p-Pb systems) on the pT and rapidity distributions for J/ф, D0 and ϒ(ns) species is demonstrated. The interpretation of the observations in frames of theoretical models is briefly discussed. Some original results, as well as prospects of fixed-target mode studies, are presented.

References

LHCb Collaboration. A.A. Alves Jr. et al. The LHCb detector at the LHC. JINST 3, S08005 (2008).

LHCb Collaboration. R. Aaij et al. Prompt and nonprompt J/ф production and nuclear modification in pPb collisions at vSNN = 8.16 TeV. Phys. Lett. B 774, 159 (2017).

B. Duclou?e, T. Lappi, H. M?antysaari. Forward J/ф production in proton-nucleus collisions at high energy. Phys. Rev. D 91, 114005 (2015). https://doi.org/10.1103/PhysRevD.91.114005

J.-P. Lansberg, H.-S. Shao. Towards an automated tool to evaluate the impact of the nuclear modification of the gluon density on quarkonium, D and B meson production in proton-nucleus collisions. Eur. Phys. J. C 77, 1 (2017). https://doi.org/10.1140/epjc/s10052-016-4575-x

A. Kusina, J.-P. Lansberg, I. Schienbein, H.-S. Shao. Gluon shadowing in heavy-flavor production at the LHC. Phys. Rev. Lett. 121, 052004 (2018). https://doi.org/10.1103/PhysRevLett.121.052004

F. Arleo, S. Peign?e. Heavy-quarkonium suppression in p-A collisions from parton energy loss in cold QCD matter. JHEP 03, 122 (2013). https://doi.org/10.1007/JHEP03(2013)122

M. Cacciari, M. Greco, P. Nason. The pT spectrum in heavy-flavour hadroproduction. JHEP 05, 007 (1998). https://doi.org/10.1088/1126-6708/1998/05/007

LHCb collaboration, R. Aaij et al. Study of prompt D0 meson production in pPb collisions at vSNN = 5 TeV. JHEP 10, 090 (2017).

LHCb collaboration,R.Aaij et al. Study of?production in pPb collisions at vSNN = 8.16 TeV. JHEP 11, 194 (2018).

E.G. Ferreiro, J.-P. Lansberg. Is bottomonium suppression in proton-nucleus and nucleus-nucleus collisions at LHC energies due to the same effects? JHEP 10, 94 (2018). https://doi.org/10.1007/JHEP10(2018)094

ATLAS Collaboration, M. Aaboud et al. Measurement of quarkonium production in proton-lead and proton-proton collisions at 5.02 TeV with the ATLAS detector. Eur. Phys. J. C 78, 171 (2018).

LHCb collaboration, R. Aaij et al. Measurement of B+, B0 and ?0b production in pPb collisions at vSNN = 8.16 TeV. Phys. Rev. D 99, 052011 (2019).

S.J. Brodsky et al. Physics opportunities of a fixed-target experiment using LHC beams. Phys. Rep. 522, 239 (2013). https://doi.org/10.1016/j.physrep.2012.10.001

LHCb collaboration, R. Aaij et al. Precision luminosity measurements at LHCb. JINST 9, P12005 (2014). https://doi.org/10.1088/1748-0221/9/12/P12005

LHCb collaboration, R. Aaij et al. Measurement of antiproton production in p-He collisions at vSNN = 110 GeV. Phys. Rev. Lett. 121, 222001 (2018).

M. Korsmeier, F. Donato, Ma. Di Mauro. Production cross sections of cosmic antiprotons in the light of new data from the NA61 and LHCb experiments. Phys. Rev. D 97, 103019 (2018). https://doi.org/10.1103/PhysRevD.97.103019

M. Boudaud et al. AMS-02 antiprotons are consistent with a secondary astrophysical origin. arXiv:1906.07119 (2019).

LHCb collaboration, R. Aaij et al. First measurement of charm production in its fixed-target configuration at the LHC. Phys. Rev. Lett. 122, 132002 (2019).

LHCb collaboration, I.Bediaga et al. LHCb SMOGUpgrade. CERN/LHCC2019-005. LHCbTDR2008May 2019.

Published
2019-09-17
How to Cite
Pugatch, V. (2019). Heavy-Ion and Fixed-Target Physics in LHCb. Ukrainian Journal of Physics, 64(7), 619. https://doi.org/10.15407/ujpe64.7.619
Section
New Trends in High-Energy Physics (Conference materials)