Electromagnetic Radiation from Au + Au Collisions at √SNN = 2.4 GeV Measured with HADES

  • D. Dittert Institut f¨ur Kernphysik, Technische Universi¨at Darmstadt
Keywords: HADES, dielectrons, effective temperature, azimuthal anisotropy


We present results of low-mass dielectron measurements from Au+Au collisions at √SNN = 2.4 GeV with HADES. The focus lies on the extraction of the effective temperature from the differential dilepton spectra and the analysis of the azimuthal anisotropy of virtual photons.


J. Adamczewski-Musch et al. for the HADES Collaboration. Probing dense baryon-rich matter with virtual photons. Nature Physics (2019) [DOI: https://doi.org/10.1038/s41567-019-0583-8]. https://doi.org/10.1038/s41567-019-0583-8

T. Galatyuk, P. Hohler, R. Rapp, F. Seck, J. Stroth. Thermal dileptons from coarse-grained transport as fireball probes at SIS energies. Eur. Phys. J. A 52, 131 (2016). https://doi.org/10.1140/epja/i2016-16131-1

H. Specht. Thermal dileptons from hot and dense strongly interacting matter. AIP Conf. Proceed. 1322, 1 (2010). https://doi.org/10.1063/1.3541982

R. Rapp, H. van Hees. Thermal dileptons as fireball thermometer and chronometer. Phys. Lett. B 753, 586 (2016). https://doi.org/10.1016/j.physletb.2015.12.065

R. Rapp, J. Wambach, H. van Hees. The chiral restoration transition of QCD and low mass dileptons. Landolt-Bornstein 23, 134 (2010). https://doi.org/10.1007/978-3-642-01539-7_6

S. Endres, H. van Hees, J. Weil, M. Bleicher. Dilepton production and reaction dynamics in heavy-ion collisions at SIS energies from coarse-grained transport simulations. Phys. Rev. C 92, 014911 (2015). https://doi.org/10.1103/PhysRevC.92.014911

S. Endres, H. van Hees, J. Weil, M. Bleicher. Coarse-graining approach for dilepton production at energies available at the CERN Super Proton Synchrotron. Phys. Rev. C 91, 054911 (2015). https://doi.org/10.1103/PhysRevC.91.054911

J. Staudenmaier, J. Weil, V. Steinberg, S. Endres, H. Petersen. Dilepton production and resonance properties within a new hadronic transport approach in the context of the GSI-HADES experimental data. Phys. Rev. C 98 (5), 054908 (2018). https://doi.org/10.1103/PhysRevC.98.054908

S. Harabasz, (HADES Collaboration). Exploring barion rich matter with heavy-ion collisions. Ukr. Phys. J. 64, 563 (2019). https://doi.org/10.15407/ujpe64.7.583

F. Seck, T. Galatyuk, R. Rapp, J. Stroth. Probing the fireball at SIS-18 energies with thermal dilepton radiadtion. Acta Phys. Polon. Supp. 10, 717 (2017). https://doi.org/10.5506/APhysPolBSupp.10.717

R. Rapp. Dilepton spectroscopy of QCD matter at collider energies. Adv. High Energy Phys. 2013, Article ID 148253 (2013). https://doi.org/10.1155/2013/148253

C. M?untz et al. for the HADES-MDC Collaboration. The HADES tracking system. Nucl. Instrum. Meth. A 535, 242 (2004).

T. Galatyuk. HADES overview. Nucl. Phys. A, 931, 41 (2014). https://doi.org/10.1016/j.nuclphysa.2014.10.044

List of all HADES beamtimes [URL:https://www.hades.gsi.de/?q=node/5].

C. Patrignani et al. (Particle Data Group). Review of particle physics. Chinese Phys. C 40, 10 (2016). https://doi.org/10.1088/1674-1137/40/10/100001

G. Vujanovic, C. Young, B. Schenke, R. Rapp, S. Jeon, C. Gale. Dilepton emission in high-energy heavy-ion collisions with viscous hydrodynamics. Phys. Rev. C 89, 034904 (2014). https://doi.org/10.1103/PhysRevC.89.034904

P. Sellheim. Reconstruction of the low-mass dielectron signal in 1.23A GeV Au+Au collisions. PhD thesis (Johann Wolfgang Goethe-Universitet, 2017).

J.-Y. Ollitrault. Flow systematics from SIS to SPS energies. Nucl. Phys. A 638 (1-2), 195 (1998). https://doi.org/10.1016/S0375-9474(98)00413-8

L. Adamczyk, et al. Dielectron azimuthal anisotropy at mid-rapidity in Au+Au collisions at vSNN = 200 GeV. Phys. Rev. C 90, 064904 (2014).

E. Bratkovskaya, J. Aichelin, M. Thomere, S. Vogel, M. Bleicher. System size and energy dependence of dilepton production in heavy-ion collisions at 1-2 GeV/nucleon energies. Phys. Rev. C 87, 064907 (2013). https://doi.org/10.1103/PhysRevC.87.064907

I. Fr?ohlich, T. Galatyuk, R. Holzmann, J. Markert, B. Ramstein, P. Salabura, J. Stroth. Design of the Pluto event generator. J. Phys. Conf. Ser. 219, 032039 (2010). https://doi.org/10.1088/1742-6596/219/3/032039

J. Adamczewski-Musch et al. for the HADES Collaboration. Deep sub-threshold ? production in Au+Au collisions. Phys. Lett. B 778, 403 (2018).

J. Adamczewski-Musch et al. for the HADES Collaboration. Sub-threshold production of K0 s mesons and ? hyperons in Au+Au collisions at vSNN = 2.4 GeV. Phys. Lett. B 793, 457 (2019).

S. Harabasz. Multi-differential pattern of low-mass e+e? excess from vSNN = 2.4 GeV Au+Au collisions with HADES. Nucl. Phys. A 982, 771 (2019). https://doi.org/10.1016/j.nuclphysa.2018.09.052

A.Wagner et al. The emission pattern of high-energy pions: A new probe for the early phase of heavy ion collisions. Phys. Rev. Lett. 85 18 (2000). https://doi.org/10.1103/PhysRevLett.85.18

How to Cite
Dittert, D. (2019). Electromagnetic Radiation from Au + Au Collisions at √SNN = 2.4 GeV Measured with HADES. Ukrainian Journal of Physics, 64(7), 560. https://doi.org/10.15407/ujpe64.7.560
New Trends in High-Energy Physics (Conference materials)