Electromagnetic Radiation from Au + Au Collisions at √SNN = 2.4 GeV Measured with HADES

  • D. Dittert Institut f¨ur Kernphysik, Technische Universi¨at Darmstadt
Keywords: HADES, dielectrons, effective temperature, azimuthal anisotropy

Abstract

We present results of low-mass dielectron measurements from Au+Au collisions at √SNN = 2.4 GeV with HADES. The focus lies on the extraction of the effective temperature from the differential dilepton spectra and the analysis of the azimuthal anisotropy of virtual photons.

References

J. Adamczewski-Musch et al. for the HADES Collaboration. Probing dense baryon-rich matter with virtual photons. Nature Physics (2019) [DOI: https://doi.org/10.1038/s41567-019-0583-8]. https://doi.org/10.1038/s41567-019-0583-8

T. Galatyuk, P. Hohler, R. Rapp, F. Seck, J. Stroth. Thermal dileptons from coarse-grained transport as fireball probes at SIS energies. Eur. Phys. J. A 52, 131 (2016). https://doi.org/10.1140/epja/i2016-16131-1

H. Specht. Thermal dileptons from hot and dense strongly interacting matter. AIP Conf. Proceed. 1322, 1 (2010). https://doi.org/10.1063/1.3541982

R. Rapp, H. van Hees. Thermal dileptons as fireball thermometer and chronometer. Phys. Lett. B 753, 586 (2016). https://doi.org/10.1016/j.physletb.2015.12.065

R. Rapp, J. Wambach, H. van Hees. The chiral restoration transition of QCD and low mass dileptons. Landolt-Bornstein 23, 134 (2010). https://doi.org/10.1007/978-3-642-01539-7_6

S. Endres, H. van Hees, J. Weil, M. Bleicher. Dilepton production and reaction dynamics in heavy-ion collisions at SIS energies from coarse-grained transport simulations. Phys. Rev. C 92, 014911 (2015). https://doi.org/10.1103/PhysRevC.92.014911

S. Endres, H. van Hees, J. Weil, M. Bleicher. Coarse-graining approach for dilepton production at energies available at the CERN Super Proton Synchrotron. Phys. Rev. C 91, 054911 (2015). https://doi.org/10.1103/PhysRevC.91.054911

J. Staudenmaier, J. Weil, V. Steinberg, S. Endres, H. Petersen. Dilepton production and resonance properties within a new hadronic transport approach in the context of the GSI-HADES experimental data. Phys. Rev. C 98 (5), 054908 (2018). https://doi.org/10.1103/PhysRevC.98.054908

S. Harabasz, (HADES Collaboration). Exploring barion rich matter with heavy-ion collisions. Ukr. Phys. J. 64, 563 (2019). https://doi.org/10.15407/ujpe64.7.583

F. Seck, T. Galatyuk, R. Rapp, J. Stroth. Probing the fireball at SIS-18 energies with thermal dilepton radiadtion. Acta Phys. Polon. Supp. 10, 717 (2017). https://doi.org/10.5506/APhysPolBSupp.10.717

R. Rapp. Dilepton spectroscopy of QCD matter at collider energies. Adv. High Energy Phys. 2013, Article ID 148253 (2013). https://doi.org/10.1155/2013/148253

C. M?untz et al. for the HADES-MDC Collaboration. The HADES tracking system. Nucl. Instrum. Meth. A 535, 242 (2004).

T. Galatyuk. HADES overview. Nucl. Phys. A, 931, 41 (2014). https://doi.org/10.1016/j.nuclphysa.2014.10.044

List of all HADES beamtimes [URL:https://www.hades.gsi.de/?q=node/5].

C. Patrignani et al. (Particle Data Group). Review of particle physics. Chinese Phys. C 40, 10 (2016). https://doi.org/10.1088/1674-1137/40/10/100001

G. Vujanovic, C. Young, B. Schenke, R. Rapp, S. Jeon, C. Gale. Dilepton emission in high-energy heavy-ion collisions with viscous hydrodynamics. Phys. Rev. C 89, 034904 (2014). https://doi.org/10.1103/PhysRevC.89.034904

P. Sellheim. Reconstruction of the low-mass dielectron signal in 1.23A GeV Au+Au collisions. PhD thesis (Johann Wolfgang Goethe-Universitet, 2017).

J.-Y. Ollitrault. Flow systematics from SIS to SPS energies. Nucl. Phys. A 638 (1-2), 195 (1998). https://doi.org/10.1016/S0375-9474(98)00413-8

L. Adamczyk, et al. Dielectron azimuthal anisotropy at mid-rapidity in Au+Au collisions at vSNN = 200 GeV. Phys. Rev. C 90, 064904 (2014).

E. Bratkovskaya, J. Aichelin, M. Thomere, S. Vogel, M. Bleicher. System size and energy dependence of dilepton production in heavy-ion collisions at 1-2 GeV/nucleon energies. Phys. Rev. C 87, 064907 (2013). https://doi.org/10.1103/PhysRevC.87.064907

I. Fr?ohlich, T. Galatyuk, R. Holzmann, J. Markert, B. Ramstein, P. Salabura, J. Stroth. Design of the Pluto event generator. J. Phys. Conf. Ser. 219, 032039 (2010). https://doi.org/10.1088/1742-6596/219/3/032039

J. Adamczewski-Musch et al. for the HADES Collaboration. Deep sub-threshold ? production in Au+Au collisions. Phys. Lett. B 778, 403 (2018).

J. Adamczewski-Musch et al. for the HADES Collaboration. Sub-threshold production of K0 s mesons and ? hyperons in Au+Au collisions at vSNN = 2.4 GeV. Phys. Lett. B 793, 457 (2019).

S. Harabasz. Multi-differential pattern of low-mass e+e? excess from vSNN = 2.4 GeV Au+Au collisions with HADES. Nucl. Phys. A 982, 771 (2019). https://doi.org/10.1016/j.nuclphysa.2018.09.052

A.Wagner et al. The emission pattern of high-energy pions: A new probe for the early phase of heavy ion collisions. Phys. Rev. Lett. 85 18 (2000). https://doi.org/10.1103/PhysRevLett.85.18

Published
2019-09-17
How to Cite
Dittert, D. (2019). Electromagnetic Radiation from Au + Au Collisions at √SNN = 2.4 GeV Measured with HADES. Ukrainian Journal of Physics, 64(7), 560. https://doi.org/10.15407/ujpe64.7.560
Section
New Trends in High-Energy Physics (Conference materials)