Third-Order Correlation Functions for a Coulomb Pair

  • V. I. Vaskivskyi G. Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences
Keywords: secondary quantization, Coulomb pairing, correlation functions


Third-order correlation functions for two particles with the electrostatic interaction have been obtained for the first time using the direct algebraic method. The main relations for the correlation functions that do not depend on the explicit form of the interaction potential between particles, as well as the relations that appear for four specific forms of the interaction operator, are considered.


V.I. Vaskivskyi. Correlation functions of Coulomb pair. Ukr. Fiz. Zh. 60, 1156 (2015) (in Ukrainian).

M.F. Sarry. Analytical methods for calculating correlation functions in quantum statistical physics. Usp. Fiz. Nauk 161, 47 (1991) (in Russian).

A.I. Akhiezer, V.V. Krasilnikov et al. Theory of superfluid Fermi-liquid. Usp. Fiz. Nauk 163, No. 2, 1 (1993) (in Russian).

A.I. Akhiezer, V.V. Krasil'nikov, S.V. Peletminskii, A.A. Yatsenko. Research on superfluidity and superconductivity on the basis of the Fermi liquid concept. Phys. Rep. 245, 1 (1994).

A.I. Akhiezer, A.A. Isaev, S.V. Peletminskii, A.P. Rekalo, A.A. Yatsenko. On the theory of superfluidity of nuclear matter on the basis of the Fermi-liquid approach. Zh. ' Eksp. Teor. Fiz. 112, 3 (1997) (in Russian).

V.R. Shaginyan, M.Ya. Amus'ya, K.G. Popov. Universal behavior of strongly correlated Fermi systems. Usp. Fiz. Nauk 177, 585 (2007) (in Russian).

V.I. Belyavsky, Yu.V. Kopaev. Superconductivity of repulsing particles. Usp. Fiz. Nauk 176, 457 (2006) (in Russian).

V.O. Krasnov. Fermion spectrum of Bose-Fermi-Hubbard model in the phase with Bose-Einstein condensate. Ukr. J. Phys. 60, 443 (2015).

I. Bariakhtar, A. Nazarenko. A model for dx2?y2 superconductivity in the strongly correlated fermionic system. Ukr. J. Phys. 59, 487 (2014).

N.N. Bogolubov, N.N. Bogolubov, jr., Introduction to Quantum Statistical Mechanics (Gordon and Breach, 1992).

A.Z. Patashinski, V.L. Pokrovski. Fluctuation Theory of Phase Transitions (Pergamon Press, 1982).

How to Cite
Vaskivskyi, V. (2019). Third-Order Correlation Functions for a Coulomb Pair. Ukrainian Journal of Physics, 64(6), 477.
General physics