Effects of Superstatistics on the Location of the Effective QCD Critical End Point

Authors

  • A. Ayala Instituto de Ciencias Nucleares, Universidad Nacional Aut´onoma de M´exico, Centre for Theoretical and Mathematical Physics, and Department of Physics, University of Cape Town
  • M. Hentschinski Departamento de Actuar´ıa, F´ısica y Matem´aticas, Universidad de las Am´ericas Puebla
  • L. A. Hernández Instituto de Ciencias Nucleares, Universidad Nacional Aut´onoma de M´exico
  • M. Loewe Instituto de F´ısica, Pontificia Universidad Cat´olica de Chile, Centre for Theoretical and Mathematical Physics, and Department of Physics, University of Cape Town, Centro Cient´ıfico-Tecnol´ogico de Valpara´ıso CCTVAL, Universidad T´ecnica Federico Santa Mar´ıa
  • R. Zamora Instituto de Ciencias B´asicas, Universidad Diego Portales

DOI:

https://doi.org/10.15407/ujpe64.8.665

Keywords:

superstatistics, QCD phase diagram, critical end point, relativistic heavy-ion collisions

Abstract

Effects of the partial thermalization during the chiral symmetry restoration at the finite temperature and quark chemical potential are considered for the position of the critical end point in an effective description of the QCD phase diagram. We find that these effects cause the critical end point to be displaced toward larger values of the temperature and lower values of the quark chemical potential, as compared to the case where the system can be regarded as completely thermalized. These effects may be important for relativistic heavy ion collisions, where the number of subsystems making up the whole interaction volume can be linked to the finite number of participants in the reaction.

References

A. Ayala, C. A. Dominguez, M. Loewe. For a recent review on the QCD sum rules technique at finite temperature. Adv. High Energy Phys. 2017, 9291623 (2017). https://doi.org/10.1155/2017/9291623

P. Costa, M.C. Ruivo, C.A. de Sousa. Thermodynamics and critical behavior in the Nambu-Jona-Lasinio model of QCD. Phys. Rev. D 77, 096001 (2008). https://doi.org/10.1103/PhysRevD.77.096001

G.A. Contrera, D. Gomez-Dumm, N.N. Scoccola. Nonlocal SU(3) chiral quark models at finite temperature: The role of the Polyakov loop. Phys. Lett. B 661, 113 (2008). https://doi.org/10.1016/j.physletb.2008.01.069

A. Ayala, A. Bashir, C. A. Dominguez, E. Gutierrez, M. Loewe, A. Raya. QCD phase diagram from finite energy sum rules. Phys. Rev. D 84, 056004 (2011). https://doi.org/10.1103/PhysRevD.84.056004

X.-Y. Xin, S.-X. Qin, Y.-X. Liu. Quark number fluctuations at finite temperature and finite chemical potential via the Dyson-Schwinger equation approach. Phys. Rev. D 90, 076006 (2014). https://doi.org/10.1103/PhysRevD.90.076006

C.S. Fischer, J. Luecker, C.A. Welzbacher. Phase structure of three and four flavor QCD. Phys. Rev. D 90, 034022 (2014). https://doi.org/10.1103/PhysRevD.90.034022

Y. Lu, Y.-L. Du, Z.-F. Cui, H.-S. Zong. Critical behaviors near the (tri-) critical end point of QCD within the NJL model. Eur. Phys. J. C 75, 495 (2015). https://doi.org/10.1140/epjc/s10052-015-3720-2

A. Ayala, M. Loewe, R. Zamora. Inverse magnetic catalysis in the linear sigma model with quarks. Phys. Rev. D 91, 016002 (2015). https://doi.org/10.1103/PhysRevD.91.016002

A. Ayala, M. Loewe, A.J. Mizher, R. Zamora. Inverse magnetic catalysis for the chiral transition induced by thermomagnetic effects on the coupling constant. Phys. Rev. D 90, 036001 (2014). https://doi.org/10.1103/PhysRevD.90.036001

A. Ayala, C.A. Dominguez, L.A. Hern?andez, M. Loewe, R. Zamora. Magnetized effective QCD phase diagram. Phys. Rev. D 92, 096011 (2015). https://doi.org/10.1103/PhysRevD.92.096011

C. Shi, Y.-L. Du, S.-S. Xu, X.-J. Liu, H.-S. Zong. Continuum study of the QCD phase diagram through an OPE-modified gluon propagator. Phys. Rev. D 93, 036006 (2016). https://doi.org/10.1103/PhysRevD.93.036006

G.A. Contrera, A.G. Grunfeld, D. Blaschke. Supporting the search for the CEP location with nonlocal PNJL models constrained by lattice QCD. Eur. Phys. J. A 52, 231 (2016). https://doi.org/10.1140/epja/i2016-16231-x

A. Ayala, C.A. Dominguez, L.A. Hern?andez, M. Loewe, A. Raya, J.C. Rojas, C. Villavicencio. Thermomagnetic properties of the strong coupling in the local Nambu-Jona-Lasinio model. Phys. Rev. D 94, 054019 (2016). https://doi.org/10.1103/PhysRevD.94.054019

Z.-F. Cui, J.-L. Zhang, H.-S. Zong. Proper time regularization and the QCD chiral phase transition. Sci. Rep. 7, 45937 (2017). https://doi.org/10.1038/srep45937

S. Datta, R.V. Gavai, S. Gupta. Quark number susceptibilities and equation of state at finite chemical potential in staggered QCD with Nt = 8. Phys. Rev. D 95, 054512 (2017). https://doi.org/10.1103/PhysRevD.95.054512

J.P. Carlomagno, M. Loewe. Comparison between the continuum threshold and the Polyakov loop as deconfinement order parameters. Phys. Rev. D 95, 036003 (2017). https://doi.org/10.1103/PhysRevD.95.036003

J. Knaute, R. Yaresko, B. K?ampfer. Holographic QCD phase diagram with critical point from Einstein-Maxwell dilaton dynamics. Phys. Lett. B 778, 419 (2018). https://doi.org/10.1016/j.physletb.2018.01.053

N.G. Antoniou, F.K. Diakonos, X.N. Maintas. C.E. Tsagkarakis. Locating the QCD critical endpoint through finite-size scaling. Phys. Rev. D 97, 034015 (2018). https://doi.org/10.1103/PhysRevD.97.034015

R. Rougemont, R. Critelli, J. Noronha-Hostler, J. Noronha, C. Ratti. Dynamical versus equilibrium properties of the QCD phase transition: A holographic perspective. Phys. Rev. D 96, 014032 (2017). https://doi.org/10.1103/PhysRevD.96.014032

A. Ayala, S. Hern?andez-Ortiz, L.A. Hern?andez. QCD phase diagram from chiral symmetry restoration: analytic approach at high and low temperature using the linear sigma model with quarks. Rev. Mex. Fis. 64, 302 (2018). https://doi.org/10.31349/RevMexFis.64.302

L. Adamczyk et al., [STAR Collaboration]. Energy dependence of moments of net-proton multiplicity distributions at RHIC. Phys. Rev. Lett. 112, 032302 (2014)

Beam energy dependence of moments of the net-charge multiplicity distributions in Au+Au collisions at RHIC. Phys. Rev. Lett. 113, 092301 (2014).

C. Yang, [for the STAR Collaboration]. The STAR beam energy scan phase II physics and upgrades. Nucl. Phys. A 967, 800 (2017). https://doi.org/10.1016/j.nuclphysa.2017.05.042

P. Senger. The heavy-ion program of the future FAIR facility. J. Phys. Conf. Ser. 798, 012062 (2017). https://doi.org/10.1088/1742-6596/798/1/012062

V. Kekelidze, A. Kovalenko, R. Lednicky, V. Matveev, I. Meshkov, A. Sorin, G. Trubnikov. Feasibility study of heavy-ion collision physics at NICA JINR. Nucl. Phys. A 967, 884 (2017). https://doi.org/10.1016/j.nuclphysa.2017.06.031

G. Wilk, Z. Wlodarczyk. Multiplicity fluctuations due to the temperature fluctuations in high-energy nuclear collisions. Phys. Rev. C 79, 054903 (2009). https://doi.org/10.1103/PhysRevC.79.054903

G. Wilk, Z. Wlodarczyk. Power laws in elementary and heavy-ion collisions. Eur. Phys. J. A 40, 299 (2009). https://doi.org/10.1140/epja/i2009-10803-9

G. Wilk, Z. Wlodarczyk. The imprints of superstatistics in multiparticle production processes. Cent. Eur. J. Phys. 10, 568 (2012). https://doi.org/10.2478/s11534-011-0111-7

M. Rybczynski, Z. Wlodarczyk. Tsallis statistics approach to the transverse momentum distributions in p-p collisions. Eur. Phys. J. C 74, 2785 (2014). https://doi.org/10.1140/epjc/s10052-014-2785-7

C.Y. Wong, G. Wilk, L.J.L. Cirto, C. Tsallis. From QCD-based hard-scattering to nonextensive statistical mechanical descriptions of transverse momentum spectra in high-energy pp and pp collisions. Phys. Rev. D 91, 114027 (2015). https://doi.org/10.1103/PhysRevD.91.114027

G. Wilk, Z. Wlodarczyk. Superstatistical cluster decay. Phys. Lett. A 379, 2941 (2015). https://doi.org/10.1016/j.physleta.2015.08.038

A. Bialas. Tsallis p? distribution from statistical clusters. Phys. Lett. B 747, 190 (2015). https://doi.org/10.1016/j.physletb.2015.05.076

T. Bhattacharyya, J. Cleymans, A. Khuntia, P. Pareek, R. Sahoo. Radial flow in non-extensive thermodynamics and study of particle spectra at LHC in the limit of small (q ? 1). Eur. Phys. J. A 52, 30 (2016). https://doi.org/10.1140/epja/i2016-16030-5

A. Bialas, A. Bzdak. Short-range two-particle correlations from statistical clusters. Phys. Rev. D 93, 094015 (2016). https://doi.org/10.1103/PhysRevD.93.094015

J. Rozynek, G.Wilk. An example of the interplay of nonextensivity and dynamics in the description of QCD matter. Eur. Phys. J. A 52, 294 (2016). https://doi.org/10.1140/epja/i2016-16294-7

S. Tripathy, T. Bhattacharyya, P. Garg, P. Kumar, R. Sahoo, J. Cleymans. Nuclear modification factor using Tsallis non-extensive statistics. Eur. Phys. J. A 52, 289 (2016). https://doi.org/10.1140/epja/i2016-16289-4

S. Grigoryan. Using the Tsallis distribution for hadron spectra in pp collisions: Pions and quarkonia at vs = 5-13000 GeV. Phys. Rev. D 95, 056021 (2017). https://doi.org/10.1103/PhysRevD.95.056021

A. Khuntia, S. Tripathy, R. Sahoo, J. Cleymans. Multiplicity dependence of non-extensive parameters for strange and multi-strange particles in proton-proton collisions at vs = 7 TeV at the LHC. Eur. Phys. J. A 53, 103 (2017). https://doi.org/10.1140/epja/i2017-12291-8

T. Bhattacharyya, J. Cleymans, L. Marques, S. Mogliacci, M.W. Paradza. On the precise determination of the Tsallis parameters in proton-proton collisions at LHC energies. J. Phys. G 45, 055001 (2018). https://doi.org/10.1088/1361-6471/aaaea0

S. Tripathy, S.K. Tiwari, M. Younus, R. Sahoo. Elliptic flow in Pb+Pb collisions at vSNN = 2.76 TeV at the LHC using Boltzmann transport equation with non-extensive statistics. Eur. Phys. J. A 54, 38 (2018). https://doi.org/10.1140/epja/i2018-12461-2

M. Ishihara. Phase transition for the system of finite volume in the ф4 theory in the Tsallis nonextensive statistics. Int. J. Mod. Phys. A 33, 1850067 (2018). https://doi.org/10.1142/S0217751X18500677

G. Wilk, Z. Wlodarczyk. Some intriguing aspects of multiparticle production processes. Int. J. Mod. Phys. A 33, 1830008 (2018). https://doi.org/10.1142/S0217751X18300089

C. Tsallis. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 52, 479 (1988). https://doi.org/10.1007/BF01016429

A. Simon, G. Wolschin. Examining nonextensive statistics in relativistic heavy-ion collisions. Phys. Rev. C 97, 044913 (2018). https://doi.org/10.1103/PhysRevC.97.044913

O. Obreg?on, A. Gil-Villegas. Generalized information entropies depending only on the probability distribution. Phys. Rev. E 88, 062146 (2013). https://doi.org/10.1103/PhysRevE.88.062146

A. Mart? inez-Merino, O. Obreg?on, M.P. Ryan, jr. Modified entropies, their corresponding Newtonian forces, potentials, and temperatures. Phys. Rev. D 95, 124031 (2017). https://doi.org/10.1103/PhysRevD.95.124031

O. Obreg?on. Superstatistics and gravitation. Entropy 2010 12, 2067 (2010). https://doi.org/10.3390/e12092067

O. Obreg?on. Superstatistics and gravitation. Entropy 2010 12, 2067 (2010). https://doi.org/10.3390/e12092067

C. Beck, E.G.D. Cohen. Superstatistics. Phys. A 322, 267 (2003). https://doi.org/10.1016/S0378-4371(03)00019-0

C. Beck. Superstatistics: theory and applications. Continuum Mech. Thermodyn. 16, 293 (2004) https://doi.org/10.1007/s00161-003-0145-1

C. Beck. Recent developments in superstatistics. Braz. J. Phys. 39, 2A, 357 (2009). https://doi.org/10.1590/S0103-97332009000400003

Al. Ayala, M. Hentschinski, L.A. Hernandez, M. Loewe, R. Zamora. Superstatistics and the effective QCD phase diagram. Phys. Rev. D 98, 114002 (2018). https://doi.org/10.1103/PhysRevD.98.114002

A. Ayala, A. Sanchez, G. Piccinelli, S. Sahu. Effective potential at finite temperature in a constant magnetic field. I. Ring diagrams in a scalar theory. Phys. Rev. D 71, 023004 (2005). https://doi.org/10.1103/PhysRevD.71.023004

M.E. Carrington. The effective potential at finite temperature in the Standard Model. Phys. Rev. D 45, 2933 (1992). https://doi.org/10.1103/PhysRevD.45.2933

J. Rozynek, G.Wilk. An example of the interplay of nonextensivity and dynamics in the description of QCD matter. Eur. Phys. J. A 52, 294 (2016). https://doi.org/10.1140/epja/i2016-16294-7

G. Wilk, Z. Wlodarczyk. Multiplicity fluctuations due to the temperature fluctuations in high-energy nuclear collisions. Phys. Rev. C 79, 054903 (2009). https://doi.org/10.1103/PhysRevC.79.054903

L.D. Landau, E.M. Lifshitz. Statistical Physics (Elsevier, 2013), ISBN 9780080570464.

S. Basu, S. Chatterjee, R. Chatterjee, T.K. Nayak, B.K. Nandi. Specific heat of matter formed in relativistic nuclear collisions. Phys. Rev. C 94, 044901 (2016). https://doi.org/10.1103/PhysRevC.94.044901

Downloads

Published

2019-09-18

How to Cite

Ayala, A., Hentschinski, M., Hernández, L. A., Loewe, M., & Zamora, R. (2019). Effects of Superstatistics on the Location of the Effective QCD Critical End Point. Ukrainian Journal of Physics, 64(8), 665. https://doi.org/10.15407/ujpe64.8.665

Issue

Section

Special Issue